
ArcPy.Mapping and ArcPy.Time Reference

This is an offline reference of the following ESRI documentation:

http://resources.arcgis.com/en/help/main/10.2/index.html#/alphabetical_list_of_arcpy_mapping_classes/00s30000000t000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/alphabetical_list_of_arcpy_mapping_functions/00s300000010000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/alphabetical_list_of_arcpy_mapping_constants/00s30000002p000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/what_is_the_time_module/01vm00000003000000/

ArcPy.Mapping Sections:

ArcPy.Mapping Classes

ArcPy.Mapping Functions

ArcPy.Mapping Constants

ArcPy.Time Sections:

ArcPy.Time Classes and Functions

www.ianbroad.com

http://resources.arcgis.com/en/help/main/10.2/index.html#/Welcome_to_the_ArcGIS_Help_Library/00qn0000001p000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/Alphabetical_list_of_arcpy_mapping_classes/00s30000000t000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/Alphabetical_list_of_arcpy_mapping_functions/00s300000010000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/Alphabetical_list_of_arcpy_mapping_constants/00s30000002p000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/What_is_the_Time_module/01vm00000003000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/Introduction_to_arcpy_mapping/00s300000032000000/
http://resources.arcgis.com/en/help/main/10.2/index.html#/What_is_the_Time_module/01vm00000003000000/
www.ianbroad.com

ArcPy.Mapping Classes

DataDrivenPages
Methods

 exportToPDF(out_pdf, {page_range_type}, {page_range_string},
{multiple_files}, {resolution}, {image_quality}, {colorspace},
{compress_vectors}, {image_compression}, {picture_symbol},
{convert_markers}, {embed_fonts}, {layers_attributes},
{georef_info}, {jpeg_compression_quality},
{show_selection_symbology})

 getPageIDFromName(page_name)

 printPages({printer_name}, {page_range_type},
{page_range_string}, {out_print_file},
{show_selection_symbology})

 refresh()
Properties

 currentPageID—Read/Write; Long

 dataFrame—Read-only; DataFrame object

 indexLayer—Read-only; Layer object

 pageCount—Read-only; Long

 pageNameField—Read-only; GP Field object

 pageRow—Read-only; GP Row object

 selectedPages—Read-only; Python list of index numbers

DataFrame
Methods

 panToExtent(extent)

 zoomToSelectedFeatures()
Properties

 credits—Read/Write; String

 description—Read/Write; String

 displayUnits—Read/Write; String

 elementHeight—Read/Write; Double

 elementPositionX—Read/Write; Double

 elementPositionY—Read/Write; Double

 elementWidth—Read/Write; String

 extent—Read/Write; GP Extent object

 geographicTransformations—Read/Write; Python list of strings

 mapUnits—Read-only; String

 name—Read/Write; String

 referenceScale—Read/Write; Double

 rotation—Read/Write; Double

 scale—Read/Write; Double

 spatialReference—Read/Write; GP Spatial Reference object

 time—Read-only; DataFrameTime object

 type—Read-only; String

Next Page

DataFrameTime
Methods

 resetTimeExtent()
Properties

 currentTime—Read/Write; Python datetime object

 endTime—Read/Write; Python datetime object

 startTime—Read/Write; Python datetime object

 timeStepInterval—Read-only; Python timedelta object

 timeWindow—Read/Write; Double

 timeWindowUnits—Read/Write; String

GraduatedColorsSymbology
Methods

 reclassify()
Properties

 classBreakDescriptions—Read/Write; Python list of strings

 classBreakLabels—Read/Write; Python list of strings

 classBreakValues—Read/Write; Python list of strings

 normalization—Read/Write; String

 numClasses—Read/Write; Long

 valueField—Read/Write; String

GraduatedSymbolsSymbology
Methods

 reclassify()
Properties

 classBreakDescriptions—Read/Write; Python list of strings

 classBreakLabels—Read/Write; Python list of strings

 classBreakValues—Read/Write; Python list of strings

 normalization—Read/Write; String

 numClasses—Read/Write; Long

 valueField—Read/Write; String

GraphicElement
Methods

 clone({suffix})

 delete()
Properties

 elementHeight—Read/Write; Double

 elementPositionX—Read/Write; Double

 elementPositionY—Read/Write; Double

 elementWidth—Read/Write; String

 isGroup— Read-only; Boolean

 name—Read/Write; String

 type—Read-only; String

LabelClass
Properties

 className—Read/Write; String

 expression—Read/Write; String

 showClassLabels—Read/Write; Boolean

 SQLQuery—Read/Write; String

Layer
Methods

 findAndReplaceWorkspacePath(find_workspace_path,
replace_workspace_path, {validate})

 getExtent({symbolized_extent})

 getSelectedExtent({symbolized_extent})

 replaceDataSource(workspace_path, workspace_type,
dataset_name, {validate})

 save()

 saveACopy(file_name, {version})

 supports(layer_property)
Properties

 brightness—Read/Write; Long

 contrast—Read/Write; Long

 credits—Read/Write; String

 datasetName—Read-only; String

 dataSource—Read-only; String

 definitionQuery—Read/Write; String

 description—Read/Write; String

 isBroken—Read-only; Boolean

 isFeatureLayer—Read-only; Boolean

 isGroupLayer—Read-only; Boolean

 isNetworkAnalystLayer—Read-only; Boolean

 isRasterizingLayer—Read-only; Boolean

 isRasterLayer—Read-only; Boolean

 isServiceLayer—Read-only; Boolean

 labelClasses—Read/Write; List of LabelClass objects

 longName—Read-only; String

 maxScale—Read/Write; Double

 minScale—Read/Write; Double

 name—Read/Write; String

 serviceProperties—Read-only; Dictionary of property sets

 showLabels—Read/Write; Boolean

 symbology—Read-only; Layer symbology object

 symbologyType—Read-only; String

 time—Read-only; Layer time object

 transparency—Read/Write; Long

 visible—Read/Write; Boolean

 workspacePath—Read-only; String

LayerTime
Properties

 daylightSavings—Read-only; Boolean

 displayDataCumulatively—Read-only; Boolean

 endTime—Read-only; Python datetime object

 endTimeField—Read-only; String

 isTimeEnabled—Read-only; Boolean

 startTime—Read-only; Python datetime object

 startTimeField—Read-only; String

 timeFormat—Read-only; String

 timeOffset—Read-only; Python timedelta object

 timeStepInterval—Read-only; Python timedelta object

 timeZone—Read-only; String

http://resources.arcgis.com/en/help/main/10.2/018z/018z0000004n000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z0000008r000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z0000000v000000.htm

LegendElement
Methods

 adjustColumnCount(column_count)

 listLegendItemLayers()

 removeItem(legend_item_layer, {index})

 updateItem(legend_item_layer, {legend_item_style_item},
{preserve_item_sizes}, {use_visible_extent},
{show_feature_count}, {use_ddp_extent}, {index})

Properties

 autoAdd—Read/Write; Boolean

 elementHeight—Read/Write; Double

 elementPositionX—Read/Write; Double

 elementPositionY—Read/Write; Double

 elementWidth—Read/Write; String

 isOverflowing—Read-only; Boolean

 items—Read-only; Python list of strings

 name—Read/Write; String

 parentDataFrameName—Read-only; String

 title—Read/Write; String

 type—Read-only; String

MapDocument
Methods

 deleteThumbnail()

 findAndReplaceWorkspacePaths(find_workspace_path,
replace_workspace_path, {validate})

 makeThumbnail()

 replaceWorkspaces(old_workspace_path, old_workspace_type,
new_workspace_path, new_workspace_type, {validate})

 save()

 saveACopy(file_name, {version})
Properties

 activeDataFrame—Read-only; DataFrame object

 activeView—Read/Write; String

 author—Read/Write; String

 credits—Read-only; String

 dataDrivenPages—Read-only; DataDrivenPages object

 dateExported—Read-only; Python datetime object

 datePrinted—Read-only; Python datetime object

 dateSaved—Read-only; Python datetime object

 description—Read/Write; String

 filePath—Read-only; String

 hyperlinkBase—Read/Write; String

 isDDPEnabled—Read-only; Boolean

 pageSize—Read-only; Python named tuple

 relativePaths—Read/Write; Boolean

 summary—Read/Write; String

 tags—Read/Write; String

 title—Read/Write; String

MapsurroundElement
Properties

 elementHeight—Read/Write; Double

 elementPositionX—Read/Write; Double

 elementPositionY—Read/Write; Double

 elementWidth—Read/Write; String

 name—Read/Write; String

 parentDataFrameName—Read-only; String

 type—Read-only; String

PDFDocument
Methods

 appendPages(pdf_path, {input_pdf_password})

 attachFile(file_path, {description})

 deletePages(page_range)

 insertPages(pdf_path, {before_page_number},
{input_pdf_password})

 saveAndClose()

 updateDocProperties({pdf_title}, {pdf_author}, {pdf_subject},
{pdf_keywords}, {pdf_open_view}, {pdf_layout})

 updateDocSecurity({new_master_password},
{new_user_password}, {encryption}, {permissions})

Properties:

 pageCount—Read-only; Long

PictureElement
Properties

 elementHeight—Read/Write; Double

 elementPositionX—Read/Write; Double

 elementPositionY—Read/Write; Double

 elementWidth—Read/Write; String

 name—Read/Write; String

 sourceImage—Read/Write; String

 type—Read-only; String

RasterClassifiedSymbology
Methods

 reclassify()
Properties

 classBreakDescriptions—Read/Write; Python list of strings

 classBreakLabels—Read/Write; Python list of strings

 classBreakValues—Read/Write; Python list of strings

 excludedValues—Read/Write; String

 normalization—Read/Write; String

 numClasses—Read/Write; Long

 valueField—Read/Write; String

StyleItem
Properties

 itemName—Read-only; String

 itemCategory—Read-only; String

 styleFolderName—Read-only; String

TableView
Methods

 findAndReplaceWorkspacePath(find_workspace_path,
replace_workspace_path, {validate})

 replaceDataSource(workspace_path, workspace_type,
dataset_name, {validate})

Properties

 datasetName—Read-only; String

 dataSource—Read-only; String

 definitionQuery—Read/Write; String

 isBroken—Read-only; Boolean

 name—Read/Write; String

 workspacePath—Read-only; String

TextElement
Methods

 clone({suffix})

 delete()
Properties

 elementHeight—Read/Write; Double

 elementPositionX—Read/Write; Double

 elementPositionY—Read/Write; Double

 elementWidth—Read/Write; String

 fontSize—Read/Write; Double

 name—Read/Write; String

 text—Read/Write; String

 type—Read-only; String

UniqueValuesSymbology
Methods

 addAllValues()
Properties

 classDescriptions—Read/Write; Python list of strings

 classLabels—Read/Write; Python list of strings

 classValues—Read/Write; Python list of strings

 showOtherValues—Read/Write; Boolean

 valueField—Read/Write; String

Previous Page

http://www.ianbroad.com

DataDrivenPages (arcpy.mapping)
Top

Summary

Provides access to methods and properties for managing the individual pages

within a map document that has Data Driven Pages enabled.

Discussion

Map series can be created without any scripting at all by using the Data Driven

Pages toolbar from within ArcMap. The reverse is also true: map series can be

completely scripted using arcpy.mapping without using the Data Driven Pages

user interface in ArcMap, but there are good reasons for combining both

techniques. The ArcMap Data Driven Pages toolbar may not provide enough

options for creating the "perfect" map series, but the inherent behavior of a Data

Driven Pages-enabled map document can save many lines of code because the

page extents, scales, dynamic text, and so forth, are all managed automatically

within the map document so that code does not need to be written.

An example of this would be a scenario where a text element's string information

needs to be formatted using custom logic or needs to be constructed from multiple

fields. It would be unnecessary to have to do everything in arcpy.mapping just

because of such a simple, custom requirement. In this case, the map document

can still be authored with Data Driven Pages enabled, and arcpy.mapping can

handle the custom text element string requirements. A code sample below

addresses this scenario.

Data Driven Pages must first be enabled and authored within a map document

(.mxd) using the Data Driven Pages toolbar in ArcMap before it can be referenced

with arcpy.mapping.

The DataDrivenPages class only has a single exportToPDF method but that

does not mean other export files can't be created. See the first code sample

below.

For more information about Data Driven Pages, see the following topics:

 Building map books with ArcGIS

 Creating Data Driven Pages

Properties

Property Explanation Data Type

currentPageID

(Read and Write)

The currentPageID property represents the active or current

page for a map document (.mxd) that has Data Driven Pages

enabled. This value is displayed in the Data Driven Pages toolbar

when Show Page is selected; it represents the x of x of y.

Long

dataFrame

(Read Only)

Returns a reference to the data frame the index layer resides within

a Data Driven Pages enabled map document.

DataFrame

indexLayer

(Read Only)

Returns a reference to the index layer in a Data Driven Pages

enabled map document.

Layer

pageCount

(Read Only)

The pageCount property returns the total page count for a map

document (.mxd) that has Data Driven Pages enabled. This value

is displayed in the Data Driven Pages toolbar when Show Page is

selected; it represents the y of x of y.

Long

pageNameField

(Read Only)

Returns a field object that represents the field used in the index

feature class when setting up Data Driven Pages.

Field

pageRow

(Read Only)

Use pageRow to return the index layer's row object for the active

or current page. The index layer fields can then be read and/or

modified as necessary.

Row

selectedPages

(Read Only)

Returns a Python list of index numbers that represent selected

index layer features in a Data Driven Pages enabled map

document.

List

http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000002s000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000003n000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z0000004n000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z0000008r000000.htm

Method Overview

Method Explanation

exportToPDF (out_pdf, {page_range_type}, {page_range_string},

{multiple_files}, {resolution}, {image_quality}, {colorspace},

{compress_vectors}, {image_compression}, {picture_symbol},

{convert_markers}, {embed_fonts}, {layers_attributes},

{georef_info}, {jpeg_compression_quality},

{show_selection_symbology})

Exports a specified set of

pages to a multipage PDF

document for a map

document (.mxd) that

has Data Driven Pages

enabled

getPageIDFromName (page_name)
Returns a Data Driven

Pages index value based

on the name of the page

printPages ({printer_name}, {page_range_type},

{page_range_string}, {out_print_file}, {show_selection_symbology})

Prints specific pages from

a Data Driven Pages-

enabled map document

(.mxd) to a specified

printer

refresh ()
Refreshes an existing

Data Driven Pages series

Methods

exportToPDF (out_pdf, {page_range_type}, {page_range_string},

{multiple_files}, {resolution}, {image_quality}, {colorspace},

{compress_vectors}, {image_compression}, {picture_symbol},

{convert_markers}, {embed_fonts}, {layers_attributes}, {georef_info},

{jpeg_compression_quality}, {show_selection_symbology})

Parameter Explanation
Data

Type

out_pdf
A string that represents the path and file name for the output

export file.

String

page_range_type The string value that designates how the pages will be printed,

similar to the Pages tab within the ArcMap Export Map dialog

box for PDF documents.

 ALL —All pages are exported.

 CURRENT —The active page is exported.

 RANGE —Only pages listed in the page_range_string
parameter will be exported.

 SELECTED —Selected index layer features/pages are
exported.

(The default value is ALL)

String

page_range_string A string that identifies the pages to be printed if the RANGE

option in the page_range_type parameter is used (for

example, 1, 3, 5-12).

String

multiple_files
An option to control how the output PDF is created. By default,

all pages are exported into a single, multipage document. You

can also specify that individual, single-page PDF documents be

exported using two different options.

 PDF_MULTIPLE_FILES_PAGE_NAME —Export single-page
documents using the page name for the output file name.

 PDF_MULTIPLE_FILES_PAGE_INDEX —Export single-page
documents using the page index value for the output file
name.

 PDF_SINGLE_FILE —Export a multipage document.

(The default value is PDF_SINGLE_FILE)

String

resolution
An integer that defines the resolution of the export file in dots

per inch (dpi).

(The default value is 300)

Integer

image_quality
A string that defines output image quality.

 BEST —An output image quality resample ratio of 1

 BETTER —An output image quality resample ratio of 2

 NORMAL —An output image quality resample ratio of 3

 FASTER —An output image quality resample ratio of 4

 FASTEST —An output image quality resample ratio of 5

(The default value is BEST)

String

colorspace
A string that defines the color space of the export file.

 CMYK —Cyan, magenta, yellow, and black color model

 RGB —Red, green, and blue color model

(The default value is RGB)

String

compress_vectors
A Boolean that controls compression of vector and text

portions of the output file. Image compression is defined

separately.

(The default value is True)

Boolean

image_compression
A string that defines the compression scheme used to compress

image or raster data in the output file.

 ADAPTIVE —Automatically selects the best compression
type for each image on the page. JPEG will be used for
large images with many unique colors. DEFLATE will be
used for all other images.

 JPEG —A lossy data compression.

 DEFLATE —A lossless data compression

String

 LZW —Lempel-Ziv-Welch, a lossless data compression

 NONE —Compression not applied

 RLE —Run-length encoded compression

(The default value is ADAPTIVE)

picture_symbol
A string that defines whether picture markers and picture fills

will be converted to vector or rasterized on output.

 RASTERIZE_BITMAP — Rasterize layers with bitmap
markers/fills.

 RASTERIZE_PICTURE —Rasterize layers with any picture
markers/fills.

 VECTORIZE_BITMAP —Vectorize layers with bitmap
markers/fills.

(The default value is RASTERIZE_BITMAP)

String

convert_markers A Boolean that controls the conversion of character-based

marker symbols to polygons. This allows the symbols to

appear correctly if the symbol font is not available or cannot be

embedded. However, setting this parameter to True disables

font embedding for all character-based marker symbols, which

can result in a change in their appearance.

(The default value is False)

Boolean

embed_fonts
A Boolean that controls the embedding of fonts in an export

file. Font embedding allows text and character markers to be

displayed correctly when the document is viewed on a

computer that does not have the necessary fonts installed.

(The default value is True)

Boolean

layers_attributes
A string that controls inclusion of PDF layer and PDF object

data (attributes) in the export file.

 LAYERS_ONLY —Export PDF layers only.

 LAYERS_AND_ATTRIBUTES —Export PDF layers and
feature attributes.

 NONE —No setting is applied.

(The default value is LAYERS_ONLY)

String

georef_info
A Boolean that enables exporting of coordinate system

information for each data frame into the output PDF file.

(The default value is True)

Boolean

jpeg_compression_q

uality

A number that controls compression quality value

when image_compression is set to ADAPTIVE or JPEG.

The valid range is 1 to 100.

A jpeg_compression_quality of 100 provides the best

quality images but creates large export files. The recommended

range is between 70 and 90.

Integer

(The default value is 80)

show_selection_sym

bology
A Boolean that controls whether the selection symbology

should be displayed in the output.

(The default value is False)

Boolean

Data Driven Pages are exported to a multipage PDF document. The map

document must have Data Driven Pages enabled. PDF files are designed to be

consistently viewable and printable across different platforms. They are commonly

used for distributing documents on the Web and are becoming a standard

interchange format for content delivery. ArcMap PDFs are editable in many

graphics applications and retain annotation, labeling, and attribute data for map

layers from the ArcMap table of contents. PDF exports from ArcMap support

embedding of fonts and thus can display symbology correctly even if the user

does not have Esri fonts installed. PDF exports from ArcMap can define colors in

CMYK or RGB values.

Refer to the Exporting your map topic in ArcGIS for Desktop Help for more

detailed discussions on exporting maps.

getPageIDFromName (page_name)

Parameter Explanation
Data

Type

page_name A value in the index layer that corresponds to the Name field that was

used to set up Data Driven Pages

String

Many of the Data Driven Pages properties and methods use an internal index

value rather than the literal names of the pages used to create the index layer.

The index values are automatically generated based on the Name andSort fields.

It may not be obvious which index value represents a specific page.

The getPageIDFromName method provides a mechanism for this translation.

pageID = mxd.dataDrivenPages.getPageIDFromName("HarborView")

mxd.dataDrivenPages.currentPageID = pageID

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

printPages ({printer_name}, {page_range_type}, {page_range_string},

{out_print_file}, {show_selection_symbology})

Parameter Explanation
Data

Type

printer_name
A string that represents the name of a printer on the local

computer.

(The default value is None)

String

page_range_type The string value that designates how the pages will be

printed, similar to the Pages tab within the

ArcMap Export Map dialog box for PDF documents.

 ALL —All pages are exported.

 CURRENT —The active page is exported.

 RANGE —Only pages listed in the page_range_string
parameter will be exported.

 SELECTED —Selected index layer features/pages are
exported.

(The default value is ALL)

String

page_range_string A string that identifies the pages to be printed if the

RANGE option in the page_range_type parameter

is used (for example, 1, 3, 5-12).

String

out_print_file A path that includes the name of an output print file. The

format created is dependent on the printer. If you're using

a PostScript printer, the format will be PostScript, and it

is recommended that a .ps extension be provided. If

you're using a Windows printer, use a .prn extension.

(The default value is None)

String

show_selection_symbology
A Boolean that controls whether the selection symbology

should be displayed in the output.

(The default value is False)

Boolean

The ListPrinterNames() function is an easy way to get the string for

the printer_name parameter.

Note:

Driver based printing is not supported on ArcGIS for Server. For Data Driven

Pages printing tasks as geoprocessing services, use the exportToPDF function

in theDataDrivenPages class. For information on general printing in web

applications see Printing in web applications.

The following script prints a specific set of Data Driven Pages to a local printer:

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\ParcelAtlas.mxd")

mxd.dataDrivenPages.printPages(r"\\olyfile\OLYCanon", "RANGE", "1,3,5-

12")

refresh ()

You will want to use the refresh method if one of the following occurs: (1)

features are added to or deleted from your index layer; (2) edits are made to

the Sort or Name field values; (3) the data frame extent is changed due to

zooming, panning, or change to map scale; or (4) edits are made to any field being

used by Data Driven Pages for an index layer feature that is driving the current

geographic extent. Data Driven Pages will retain the original settings in these

cases until the refresh method is executed.

Code Sample

DataDrivenPages example 1

The following script exports each page of a Data Driven Pages series into an

individual PNG file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\ParcelAtlas.mxd")

for pageNum in range(1, mxd.dataDrivenPages.pageCount + 1):

 mxd.dataDrivenPages.currentPageID = pageNum

 print "Exporting page {0} of

{1}".format(str(mxd.dataDrivenPages.currentPageID),

str(mxd.dataDrivenPages.pageCount))

 arcpy.mapping.ExportToPNG(mxd,

r"C:\Project\OutPut\ParcelAtlas_Page" + str(pageNum) + ".png")

del mxd

http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w5000000.htm

DataDrivenPages example 2

The following script will print only a set of map pages using a list of page names

and also modifies text element map title information using customized logic that

can only be accomplished within the scripting environment (in other words, the title

string is custom built based on an attribute value). The script loops through each

named page and sets the currentPageID accordingly. It then extracts the value

from a field in the index layer called TRS. It next parses the values, strips away

leading zeros, reconstructs the text element title string, and sends the results to a

printer.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\ParcelAtlas.mxd")

pageNameList = ["MPB", "PJB", "AFB", "ABB"]

for pageName in pageNameList:

 pageID = mxd.dataDrivenPages.getPageIDFromName(pageName)

 mxd.dataDrivenPages.currentPageID = pageID

 fieldValue = mxd.dataDrivenPages.pageRow.TSR #example values from

a field called TSR are "080102", "031400"

 TRSTitle = arcpy.mapping.ListLayoutElements(MXD, "TEXT_ELEMENT",

"TRSTitle")[0]

 township, range, section = fieldValue[:2].strip("0"),

fieldValue[2:-2].strip("0"), fieldValue[-2:].strip("0")

 if section != "":

 TRSTitle.text = "Section {0} T.{1}N. R.{2}W.

W.M.".format(section, township, range)

 else:

 TRSTitle.text = "T.{0}N. R.{1}W. W.M.".format(township, range)

 mxd.dataDrivenPages.printPages(r"\\olyfile\SUITE_303", "CURRENT")

del mxd

DataDrivenPages example 3

The following script will export only the selected index pages (pages 1-10) out to

individual PDF files. The resulting PDFs will have the index number appended to

the output file name.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\ParcelAtlas.mxd")

ddp = mxd.dataDrivenPages

indexLayer = ddp.indexLayer

arcpy.SelectLayerByAttribute_management(indexLayer, "NEW_SELECTION",

 '"PageNumber" >= 1 AND

"PageNumber" <= 10')

for indexPage in ddp.selectedPages:

 ddp.currentPageID = indexPage

 ddp.exportToPDF(r"C:\Project\Output\Page" + str(indexPage) + ".pdf",

"CURRENT")

del mxd

DataFrame (arcpy.mapping)
Top

Summary

The DataFrame object provides access to many of the data frame properties

found within a map document (.mxd). A reference to the DataFrame object is

often used as an argument for many functions to filter layers or tables within a

specific data frame.

Discussion

The DataFrame object provides access to important data frame properties.

The ListDataFrames function returns a Python list of DataFrame objects. It is

necessary to then iterate through each item in the list or to specify an index

number to reference a specific DataFrame object. The object works with both

map units and page units depending upon the property being used. For example,

it can be used to set map extent, scale, and rotation, as well as items like spatial

reference. The DataFrame object can also be positioned and/or sized on the

layout using page units. The DataFrame object also provides access to

informational items like credits and description.

A reference to a data frame can also be very useful when trying to reference other

objects as well. For example, the ListLayers function provides an optional

parameter called data_frame so that layers can be searched within a single data

frame rather than the entire map document. The DataFrame object is also used as

an optional parameter to distinguish printing or export a data frame versus a page

layout. For this reason it is important to uniquely name each data frame so a

specific data frame can be easily referenced.

The data frame extent coordinates are based on the extent of the data frame in

Layout View, not in Data View. This is because the shape of the data frame in

Data View may have a different aspect ratio than the data frame in Layout View.

The elementPositionX and elementPositionY parameters are based on

the element's anchor position which is set via the Size and Position Tab on the

elements properties dialog box in ArcMap.

Page units can only be changed in the ArcMap via Customize > ArcMap

Options > Layout View Tab.

Properties

Property Explanation Data Type

credits

(Read and Write)

Provides the ability to either get or set the data frame

credits information.

String

description

(Read and Write)

Provides the ability to either get or set the data frame

description information.

String

displayUnits

(Read and Write)

Provides the ability to either get or set the data frame

distance units.

String

elementHeight

(Read and Write)

The height of the element in page units. The units

assigned or reported are in page units.

Double

elementPositionX

(Read and Write)

The X location of the data frame element's anchor

position. The units assigned or reported are in page

units.

Double

elementPositionY

(Read and Write)

The Y location of the data frame element's anchor

position. The units assigned or reported are in page

units.

Double

elementWidth

(Read and Write)

The width of the element in page units. The units

assigned or reported are in page units.

Double

extent

(Read and Write)

Provides the ability to get or set the data frame's map

extent using map coordinates (i.e., map units). A copy

of the Extent object must be made before modifying

its properties. The modified copy is then used to set the

new extent properties. Note: If you try to set the extent

by simply referencing the Extent object, changes

won't be saved. For example, df.extent.xMin =

some value won't work.

If the aspect ratio of the extent does not match the

shape of the data frame, the final extent will be

adjusted to fit the new extent within the shape of the

data frame. In other words, if you set explicit X, Y

coordinates, you may not get the same values returned

if you attempt to read them later.

Note: The properties of the Extent object are by

default read-only in the help system. A special

exception was made for the arcpy.mapping scripting

environment to enable changing extents during a map

automation process.

Extent

http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm

df =

arcpy.mapping.ListDataFrames(mxd)[0]

newExtent = df.extent

newExtent.XMin, newExtent.YMin = -

180.0, -90.0

newExtent.XMax, newExtent.YMax =

180.0, 90.0

df.extent = newExtent

geographicTransform

ations

(Read and Write)

Provides the ability to either get or set the data frame's

geographic transformation(s). The property will return

the name(s) of the transformation(s) in a list. Only

existing, predefined transformation names (or their

corresponding code value) can be used to set a

geographic transformation.

A complete list of transformations and code values can

be found on the ArcGIS Resource Center.

The geographicTransformations property

cannot be used to create custom transformations. Only

predefined methods can be referenced.

There is always one geographic transformation loaded

into a map document by default:

NAD_1927_To_NAD_1983_NADCON. This will be

overwritten when setting a new list. Geographic

transformations can also be cleared by setting an

empty list.

The following examples will set two transformation

methods using name strings. The first from NAD27 to

NAD 83 and the second from NAD83 to HARN. The

second example does the same thing but uses

transformation codes instead.

df.geographicTransformations =

[u'NAD_1927_To_NAD_1983_NADCON',

u'NAD_1983_To_HARN_New_Jersey']

df.geographicTransformations =

[1241,1554]

String

mapUnits

(Read Only)

Returns a string value that reports the current data

frame map units. These are based on the data frame's

current coordinate system.

String

name
Provides the ability to either get or set the data frame's

name as it appears in the table of contents in a map

String

(Read and Write) document and also the actual name of the element

within the layout.

referenceScale

(Read and Write)

Provides the ability to either get or set the data frame's

reference scale. This is the scale in which all symbol

and text sizes used in the data frame will be made

relative.

Double

rotation

(Read and Write)

Provides the ability to either get or set the data frame's

rotation value. It represents the number of degrees by

which the data frame will be rotated, measured

counterclockwise from the north. To rotate clockwise,

use a negative value.

Double

scale

(Read and Write)

Provides the ability to either get or set the current scale

of the active data frame. A numerical (double) value

must be used.

Double

spatialReference

(Read and Write)

Provides access to the SpatialReference of the

data frame. The spatial reference contains information

about the coordinate system and units.

SpatialReferenc

e

time

(Read Only)

Returns the DataFrameTime object that provides

access to controlling the display for time-enabled

layers.

DataFrameTime

type

(Read Only)

Returns the element type for any given page layout

element.

 DATAFRAME_ELEMENT —Dataframe element

 GRAPHIC_ELEMENT —Graphic element

 LEGEND_ELEMENT —Legend element

 MAPSURROUND_ELEMENT —Mapsurround
element

 PICTURE_ELEMENT —Picture element

 TEXT_ELEMENT —Text element

String

Method Overview

Method Explanation

panToExtent (extent) Pans and centers the data frame extent using a new Extent object

without changing the data frame's scale

zoomToSelectedFeatures

()
Changes the data frame extent to match the extent of the currently

selected features for all layers in a data frame

http://support.esri.com/index.cfm?fa=knowledgebase.techarticles.articleshow&d=21327
http://resources.arcgis.com/en/help/main/10.2/018z/018z0000000v000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z0000000v000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z0000000v000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm

Methods

panToExtent (extent)

Parameter Explanation Data Type

extent A geoprocessing Extent object Extent

This method is perfect for situations where data frame scale does not change.

Rather than setting the extent and then having to reset the scale each

time, panToExtent maintains the scale and simply centers the current data

frame on the new extent.

The following example will pan the extent of a data frame by passing in the extent

of selected features for a specific layer.

The Layer class getSelectedExtent method is used for this purpose.

df.panToExtent(lyr.getSelectedExtent())

zoomToSelectedFeatures ()

This performs the same ArcMap operation as Selection > Zoom To Selected

Features. One difference is that if no features are selected, it will zoom to the full

extent of all layers. If you want to zoom to the extent of selected features for a

specific layer, try using the Layer.getSelectedExtent method.

The following example will zoom to the extent of all selected features:

df.zoomToSelectedFeatures()

The following example will zoom to the extent of selected features for a specific

layer. This example uses a method on the Layer object.

df.extent = lyr.getSelectedExtent()

Code Sample

DataFrame example 1

The following script will set each data frame's rotation property

to 0 and scale property to 1:24000 before exporting each data frame to an

individual output TIFF file using the data frame name property as the name of the

output file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for df in arcpy.mapping.ListDataFrames(mxd):

 df.rotation = 0

 df.scale = 24000

 outFile = r"C:\Project\Output\\" + df.name + ".tif"

 arcpy.mapping.ExportToTIFF(mxd, outFile, df)

del mxd

DataFrame example 2

The following script will set the data frame's extent to the extent of the selected

features in a layer. A 10% buffer is added to the extent by multiplying the scale.

This example uses the getSelectedExtent method on the Layer object. This

script is run from the interactive window within ArcMap using the CURRENT

keyword rather than providing a path to a map document.

import arcpy

mxd = arcpy.mapping.MapDocument("CURRENT")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

accidentLayer = arcpy.mapping.ListLayers(mxd, "accidents", df)[0]

arcpy.SelectLayerByAttribute_management(accidentLayer,

"NEW_SELECTION", "\"Accidents\" > 5")

df.extent = accidentLayer.getSelectedExtent(False)

df.scale = df.scale * 1.1

arcpy.mapping.ExportToPDF(mxd,

r"C:\Project\Output\FrequentAccidents.pdf", df)

arcpy.RefreshActiveView()

del mxd

http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s300000008000000.htm

DataFrame example 3

The following script will modify the position and size of a specific data frame on the

layout.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

df.elementPositionX, df.elementPositionY = 1, 1

df.elementHeight, df.elementWidth = 5, 6.5

mxd.save()

del mxd

DataFrame example 4

The following script converts a data frame's extent object into a polygon feature so

that it can be used with the SelectLayerByLocation_management function.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

lyr = arcpy.mapping.ListLayers(mxd, "Accidents", df)[0]

#The DataFrame extent object is converted into a polygon feature so it

can be used with the SelectLayerByLocation function.

dfAsFeature = arcpy.Polygon(arcpy.Array([df.extent.lowerLeft,

df.extent.lowerRight, df.extent.upperRight, df.extent.upperLeft]),

 df.spatialReference)

arcpy.SelectLayerByLocation_management(lyr, "INTERSECT", dfAsFeature,

"", "NEW_SELECTION")

mxd.save()

del mxd

DataFrameTime (arcpy.mapping)
Top

Summary

The DataFrameTime object provides access to time management operations for

time-enabled layers in a data frame.

Discussion

The DataFrameTime object provides capabilities for two basic scenarios:

 The first scenario is for map documents that have already been published with

time-enabled layers where settings were established via the Time Slider

Options dialog box and saved with the map document. With this scenario,

those existing properties can be used for automating output. Examples 1 and 2

below are examples for this first scenario.

 The second scenario deals with map documents that don't have any time-

enabled layers but that time-enabled layers are added by a script and therefore

the time slider options need to be set so that the desired output can be

automated. Example 3 below represents this second scenario.

The timeStepInterval uses the EsriTimeDelta class. The EsriTimeDelta class

is an alternative to the core python datetime.timedelta and uses internal Esri

time units for intervals that can't be handled by the core python timedelta object

(such as months, weeks, etc.) The timeStepInterval can be used to loop

through dates and times. If you want to use a different time interval within a loop,

create a new python timedelta object or an EsriTimeDelta object (see example

3 below). Be aware that if the timeWindowUnits are modified and saved, it will

affect the timeStepInterval.

Legacy:

Prior to the 10.1 release, the timeStepInterval property from

the DataFrameTime class returned a python datetime.timedelta object.

To embed a time stamp within an image when exporting a data frame, use time

text.

There are numerous help articles concerning time in ArcGIS. Here are a few that

are most related to the methods and properties on the DataFrameTime object:

 Using time information from the data source

 Using the Time Slider window

 About modifying time slider properties

Properties

Property Explanation Data Type

currentTime

(Read and Write)

The current date and time for a data frame with time-enabled

layers. The same property can be found in the Time Slider

Optionsdialog box in ArcMap.

DateTime

endTime

(Read and Write)

The end date and time for a data frame with time-enabled

layers. The same property can be found in the Time Slider

Optionsdialog box in ArcMap.

DateTime

startTime

(Read and Write)

The start date and time for a data frame with time-enabled

layers. The same property can be found in the Time Slider

Optionsdialog box in ArcMap.

DateTime

timeStepInterval

(Read Only)

Returns the time step interval that has been set via the Time

Slider Options dialog box in ArcMap. This value is

a EsriTimeDeltaobject and is used to iterate over a period of

time (e.g., 2 days, 1 month, and so on).

EsriTimeDelta

timeWindow

(Read and Write)

The time window that controls how many units (e.g., days)

of time-enabled data appear prior to and including the current

time. For example, if timeWindow is set to 1

and timeWindowUnits is set to weeks, then the time

window will be 2 weeks.

Double

timeWindowUnits

(Read and Write)

The units that are used with the TimeStepInterval and

the TimeWindow properties. The valid units are:

 MILLISECONDS

 SECONDS

 MINUTES

 HOURS

 DAYS

 WEEKS

 MONTHS

 YEARS

 DECADES

 CENTURIES

String

http://resources.arcgis.com/en/help/main/10.2/005z/005z0000002m000000.htm
http://resources.arcgis.com/en/help/main/10.2/005z/005z0000002m000000.htm
http://resources.arcgis.com/en/help/main/10.2/005z/005z0000000q000000.htm
http://resources.arcgis.com/en/help/main/10.2/005z/005z0000000z000000.htm
http://resources.arcgis.com/en/help/main/10.2/005z/005z00000019000000.htm

Method Overview

Method Explanation

resetTimeExtent

()
Resets the time extent to the time window extent of all time-enabled layers in

a data frame

Methods

resetTimeExtent ()

This performs the same operation as clicking the Min Time and Max Time buttons

on the Time Slider Options dialog box in ArcMap.

Code Sample

DataFrameTime example 1

The following script uses time settings (start time, end time, and time interval)

published in an existing map document to export a series of images. Each output

image is given a unique name using the parsed date information from the time

stamp.

import arcpy

import os

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Traffic Analysis")[0]

df.time.currentTime = df.time.startTime

while df.time.currentTime <= df.time.endTime:

 # An example str(newTime) would be: "2008-12-29 02:19:59"

 # The following line splits the string at the space and takes the

first

 # item in the resulting string.

 fileName = str(df.time.currentTime).split(" ")[0] + ".png"

 arcpy.mapping.ExportToPNG(mxd, os.path.join(r"C:\Project\Output",

fileName), df)

 df.time.currentTime = df.time.currentTime +

df.time.timeStepInterval

del mxd

DataFrameTime example 2

The following script is identical to example 1 above but uses a modified start time,

end time, and interval that are different from the existing settings that were

published in a time-enabled data frame within a map document. The Python

datetime module is used to create times and time deltas. Alternatively,

the EsriTimeDelta class could also be used to create time deltas.

import arcpy

import datetime

import os

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Traffic Analysis")[0]

df.time.currentTime = datetime.datetime(2008, 10, 1)

endTime = datetime.datetime(2008, 10, 31)

interval = datetime.timedelta(days=7)

while df.time.currentTime <= endTime:

 # An example str(newTime) would be: "2008-01-29 02:19:59"

 # The following line splits the string at the space and takes the

first

 # item in the resulting string.

 fileName = str(df.time.currentTime).split(" ")[0] + ".png"

 arcpy.mapping.ExportToPNG(mxd, os.path.join(r"C:\Project\Output",

fileName), df)

 df.time.currentTime = df.time.currentTime + interval

del mxd

DataFrameTime example 3

The following script represents a scenario in which a new time-enabled layer file is

added to a new data frame that is not time aware; therefore, the time slider

properties are not set within the map document. This script adds a time-enabled

layer to the data frame using the AddLayer function and then sets the appropriate

time settings similar to the scripts above. In this example, the time interval is set

using the EsriTimeDelta class. Alternatively, the Python datetime module could be

used to create the time delta.

import arcpy

import datetime

import os

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "New Data Frame")[0]

timeLayer = arcpy.mapping.Layer(r"C:\Project\Data\Accidents.lyr")

arcpy.mapping.AddLayer(df, timeLayer, "AUTO_ARRANGE")

df.time.resetTimeExtent()

df.time.timeWindowUnits = "DAYS"

df.time.timeWindow = 7

df.time.currentTime = datetime.datetime(2008, 10, 1)

endTime = datetime.datetime(2008, 10, 31)

interval = arcpy.time.EsriTimeDelta(1, 'weeks')

while df.time.currentTime <= endTime:

 # An example str(newTime) would be: "2008-01-29 02:19:59"

 # The following line splits the string at the space and takes the

first

 # item in the resulting string.

 fileName = str(df.time.currentTime).split(" ")[0] + ".png"

 arcpy.mapping.ExportToPNG(mxd, os.path.join(r"C:\Project\Output",

fileName))

 df.time.currentTime = df.time.currentTime + interval

del mxd, timeLayer

GraduatedColorsSymbology (arcpy.mapping)
Top

Summary

The GraduatedColorsSymbology class provides access to different properties

that allow you to change the appearance of a layer's graduated colors symbology.

Discussion

The GraduatedColorsSymbology class provides access to a limited number of

properties and methods that allow you to automate layer symbology in a map

document (.mxd) or layer file (.lyr). Basic operations such as changing the

number of classes, modifying class break values and labels, or changing the field

that the symbology is based on are some of the properties that can be modified.

For access to the complete set of layer symbology properties and settings, for

example, changing individual symbols for individual classes, it is necessary to

author these changes in the ArcMap user interface and save those changes to a

layer file. These custom changes can then be applied to existing layers using

the UpdateLayer function.

A layer can use any number of symbologies but not all of them can be modified.

Not all layers will use the GraduatedColorsSymbology class, so it is important

to first test if the layer is using this symbology class before attempting to make

changes to its properties. The symbologyType property on the Layer class was

designed for this purpose. First test if the symbologyType for the layer is

graduated colors (if lyr.symbologyType == "GRADUATED_COLORS":),

then create a variable reference to the GraduatedColorsSymbology class for

that layer (lyrSymbolClass = lyr.symbology).

The symbologyType on the Layer object is a read-only property. In other words,

you can't change a graduated colors symbology to a graduated symbols or a

unique value symbology. You can only change the properties for a specific

symbology class on a layer. The only way to change the symbology type is by

publishing the desired result to a layer file and using the UpdateLayer function.

The classification method cannot be changed. In cases where you want to use

different classification methods, you would need to preauthor layer files and use

those to update a layer, then modify the properties that can be changed. The only

exception to this rule is when you set classBreakValues. Similar to the ArcMap

user interface, explicitly setting classBreakValues will automatically set the

classification method to manual. Also similar to the ArcMap user interface, once

the classification method is set to manual, you can't change

the numClasses parameter.

Unlike the ArcMap user interface, you can set a minimum value when setting

the classBreakValues parameter. The first value in

the classBreakValues list is the minimum value. All other values are the class

break values as they appear in the ArcMap user interface. For this reason,

the classBreakValues list will always have one more value than

the classBreakLabels and classBreakDescriptions lists.

The classBreakValues, classBreakLabels,

and classBreakDescriptions lists must always be sorted from lowest value

to highest value. This is also the case for layers that were authored with reversed

sorting.

Setting one parameter will often modify other parameters automatically. For

example, if you set numClasses, normalization, or

the valueField parameters, the classBreakValues, classBreakLabels,

andclassBreakDescriptions properties will automatically be adjusted based

on the current classification method. For this reason, the order in which properties

are modified is important.

The reclassify method updates a layer's symbology properties based on the

underlying source data. It is useful when a layer's symbology is updated using

the UpdateLayer function with symbology stored in another layer or layer file

(.lyr). For example, let's say you want to update the color properties of the

symbology of a layer in a map document with the symbology stored in a layer file.

However, the layer in the map document and the layer file have different data

sources. The minimum and maximum values and class breaks in the layer file may

be different than the layer in the map document. Updating the symbology of the

layer in the map document with the symbology stored in the layer file may produce

unintended results (for example, the class break values will match the layer file's

data source statistics as opposed to the map document layer's data source

statistics. However, if you follow UpdateLayer with the reclassify() method,

the end result is like using the color properties from the symbology in the layer file,

but other characteristics are based on the map document layer's underlying

source data.

If you are making these symbology modifications via the Python window and you

are referencing a map document using CURRENT, you may not immediately see

the changes in the ArcMap application. To refresh the map document, try using

the RefreshActiveView and RefreshTOC functions.

http://resources.arcgis.com/en/help/main/10.2/018v/018v0000006s000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v0000001m000000.htm

Properties

Property Explanation
Data

Type

classBreakDescriptions

(Read and Write)

A sorted list of strings that represent the descriptions for

each class break value that can optionally appear in a map

document's legend. These values are only accessible in the

ArcMap user interface by right-clicking a symbol displayed

within the Symbologytab in the Layer Properties dialog box

and selecting Edit Description. The number of descriptions

in the sorted list must always be one less than the number

of classBreakValues. This is because

the classBreakValues list also includes a minimum

value which you don't see in the user interface. These values

are affected by changes to nearly all other class properties,

so it is best practice to set these values last.

List

classBreakLabels

(Read and Write)

A sorted list of strings that represent the labels for each class

break that appear in the map document's table of contents

and legend items. The number of labels in the sorted list

must always be one less than the number

of classBreakValues. This is because

the classBreakValues list also includes a minimum

value which you don't see in the user interface. These values

are affected by changes to nearly all other class properties so

it is best practice to set these values last.

List

classBreakValues

(Read and Write)

A sorted list of doubles that includes the minimum and

maximum values that represent the class breaks. When

settingclassBreakValues, it will automatically set

the numClasses property and will also set the

classification method to manual as well as update other

properties like classBreakLabels. Unlike the ArcMap

user interface, you have the ability to set a minimum value.

The first value in the sorted list represents the minimum

value and the remaining values are the class breaks that

appear in the user interface; therefore, there will always be

one more item in the classBreakValues list than in

theclassBreakLabels and classBreakDescripti

ons lists. Changing this value will automatically adjust

other symbology properties based on the new information.

List

normalization

(Read and Write)

A string that represents a valid dataset field name used for

normalization. Changing this value will automatically adjust

other symbology properties based on the new information.

The normalization field can be removed by setting the value

to None (for

example, lyr.symbology.normalization =

None).

String

numClasses

(Read and Write)

A long integer that represents the number of classes to be

used with the current classification method. Changing this

value will overwrite other symbol properties

like classBreakValues and classBreakLabels.

This value cannot be set if the classification method

is manual; therefore, numClasses should not be called

Long

after the classBreakValues property because it will

automatically set the classification method to manual.

Changing this value will automatically adjust other

symbology properties based on the new information.

valueField

(Read and Write)

A string that represents a valid dataset field name used for

the layer's classification symbology. Changing this value

will automatically adjust other symbology properties based

on the new information.

String

Method Overview

Method Explanation

reclassify ()
Resets the layer's symbology to the layer's data source information and statistics.

Methods

reclassify ()

The reclassify method updates a layer's symbology properties based on the

underlying source data. It is useful when a layer's symbology is updated using

the UpdateLayer function with symbology stored in another layer or layer file

(.lyr). This method will automatically update the symbology properties based on

the layer's actual data source information and statistics and not the information

that is persisted in a layer file. The method needs to be used cautiously because it

has the potential to overwrite other symbology properties.

The reclassify method will

regenerate classBreakValues, classBreakLabels,

and classBreakDescriptions. It will not

affectnumClasses or normalization. The reclassify method has no affect

on a manual classification.

Code Sample

GraduatedColorsSymbology example 1

The following script modifies the symbology for all graduated colors layers in a

map document. It iterates through each layer, changes the value field and the

number of classes, and saves the map document.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for lyr in arcpy.mapping.ListLayers(mxd):

 if lyr.symbologyType == "GRADUATED_COLORS":

 lyr.symbology.valueField = "POP2007"

 lyr.symbology.numClasses = 5

mxd.save()

del mxd

GraduatedColorsSymbology example 2

The following script modifies the symbology for a layer in a map document. It first

updates the layer's symbology using a layer file on disk with

the UpdateLayer function. The layer file contains a custom color ramp which is

applied to the layer. Next, it verifies that the layer has graduated color symbology.

Finally, the script modifies a number of the properties on

the GraduatedColorsSymbology class and exports the result to PDF.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Census")[0]

lyr = arcpy.mapping.ListLayers(mxd, "StatePopulation", df)[0]

lyrFile = arcpy.mapping.Layer(r"C:\Project\LYRs\Population.lyr")

arcpy.mapping.UpdateLayer(df, lyr, lyrFile, True)

if lyr.symbologyType == "GRADUATED_COLORS":

 lyr.symbology.valueField = "POP2000"

 lyr.symbology.classBreakValues = [250000, 999999, 4999999, 9999999,

35000000]

 lyr.symbology.classBreakLabels = ["250,000 to 999,999", "1,000,000

to 4,999,999",

 "5,000,000 to 9,999,999",

"10,000,000 to 35,000,000"]

arcpy.mapping.ExportToPDF(mxd,

r"C:\Project\Output\StatePopulation.pdf")

del mxd, lyrFile

GraduatedSymbolsSymbology (arcpy.mapping)
Top

Summary

The GraduatedSymbolsSymbology class provides access to different

properties that allow you to change the appearance of a layer's graduated

symbols symbology.

Discussion

The GraduatedSymbolsSymbology class provides access to a limited number

of properties and methods that allow you to automate layer symbology in a map

document (.mxd) or layer file (.lyr). Basic operations such as changing the

number of classes, modifying class break values and labels, or changing the field

that the symbology is based on are some of the properties that can be modified.

For access to the complete set of layer symbology properties and settings, for

example, changing individual symbols for individual classes, it is necessary to

author these changes in the ArcMap user interface and then save those changes

to a layer file. These custom settings can then be applied to existing layers using

the UpdateLayer function.

A layer can use any number of symbologies, but not all of them can be modified.

Not all layers will use the GraduatedSymbolsSymbology class, so it is

important to first test if the layer is using this symbology class before attempting to

make changes to its properties. The symbologyType property on the Layer class

was designed for this purpose. First test if the symbologyType for the layer is

graduated symbols (if lyr.symbologyType == "GRADUATED_SYMBOLS":),

then create a variable reference to the GraduatedSymbolsSymbology class for

that layer (lyrSymbolClass = lyr.symbology).

The symbologyType on the Layer object is a read-only property. In other words,

you can't change a graduated symbols symbology to a graduated colors or a

unique value symbology. You can only change the properties for a specific

symbology class on a layer. The only way to change the symbology type is by

publishing the desired result to a layer file and using the UpdateLayer function.

The classification method cannot be changed. In cases where you want to use

different classification methods, you would need to preauthor layer files and use

those to update a layer, then modify the properties than can be changed. The only

exception to this rule is when you set classBreakValues. Similar to the ArcMap

user interface, explicitly setting classBreakValues will automatically set the

classification method to manual. Also similar to the ArcMap user interface, once

the classification method is set to manual, you can't change

the numClasses parameter.

Unlike the ArcMap user interface, you can set a minimum value when setting

the classBreakValues parameter. The first value in

the classBreakValues list is the minimum value. All other values are the class

break values as they appear in the ArcMap user interface. For this reason,

the classBreakValues list will always have one more value than

the classBreakLabels and classBreakDescriptions lists.

The classBreakValues, classBreakLabels,

and classBreakDescriptions lists must always be sorted from lowest value

to highest value. This is also the case for layers that were authored with reversed

sorting.

Setting one parameter will often modify other parameters automatically. For

example, if you set numClasses, normalization, or

the valueField parameters,

the classBreakValues, classBreakLabels, andclassBreakDescriptio

ns properties will automatically be adjusted based on the current classification

method. For this reason, the order in which properties are modified is important.

The reclassify method updates a layer's symbology properties based on the

underlying source data. It is useful when a layer's symbology is updated using

the UpdateLayer function with symbology stored in another layer or layer file

(.lyr). For example, let's say you want to update the color properties of the

symbology of a layer in a map document with the symbology stored in a layer file.

However, the layer in the map document and the layer file have different data

sources. The minimum and maximum values and class breaks in the layer file may

be different than the layer in the map document. Updating the symbology of the

layer in the map document with the symbology stored in the layer file may produce

unintended results (for example, the class break values will match the layer file's

data source statistics as opposed to the map document layer's data source

statistics. However, if you follow UpdateLayer with the reclassify() method,

the end result is like using the color properties from the symbology in the layer file,

but other characteristics are based on the map document layer's underlying

source data.

If you are making these symbology modifications via the Python window and you

are referencing a map document using CURRENT, you may not immediately see

the changes in the ArcMap application. To refresh the map document, try using

the RefreshActiveView and RefreshTOC functions.

http://resources.arcgis.com/en/help/main/10.2/018v/018v0000006s000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v0000001m000000.htm

Properties

Property Explanation
Data

Type

classBreakDescriptions

(Read and Write)

A sorted list of strings that represent the descriptions for each

class break value that can optionally appear in a map

document's legend. These values are only accessible in the

ArcMap user interface by right-clicking a symbol displayed

within the Symbologytab in the Layer Properties dialog box and

selecting Edit Description. The number of descriptions in the

sorted list must always be one less than the number

of classBreakValues. This is because

the classBreakValues list also includes a minimum value

which you don't see in the user interface. These values are

affected by changes to nearly all other class properties, so it is

best practice to set these values last.

List

classBreakLabels

(Read and Write)

A sorted list of strings that represent the labels for each class

break that appear in the map document's table of contents and

legend items. The number of labels in the sorted list must

always be one less than the number of classBreakValues.

This is because the classBreakValues list also includes a

minimum value which you don't see in the user interface. These

values are affected by changes to nearly all other class

properties so it is best practice to set these values last.

List

classBreakValues

(Read and Write)

A sorted list of doubles that includes the minimum and

maximum values that represent the class breaks. When

settingclassBreakValues, it will automatically set

the numClasses property and will also set the classification

method to manual as well as update other properties

like classBreakLabels. Unlike the ArcMap user interface,

you have the ability to set a minimum value. The first value in

the sorted list represents the minimum value and the remaining

values are the class breaks that appear in the user interface;

therefore, there will always be one more item in

the classBreakValues list than in

theclassBreakLabels and classBreakDescription

s lists. Changing this value will automatically adjust other

symbology properties based on the new information.

List

normalization

(Read and Write)

A string that represents a valid dataset field name used for

normalization. Changing this value will automatically adjust

other symbology properties based on the new information. The

normalization field can be removed by setting the value

to None (for example, lyr.symbology.normalization

= None).

String

numClasses

(Read and Write)

A long integer that represents the number of classes to be used

with the current classification method. Changing this value will

overwrite other symbol properties

like classBreakValues and classBreakLabels. This

value cannot be set if the classification method is manual;

therefore, numClasses should not be called after

the classBreakValues property because it will

automatically set the classification method to manual.

Long

Changing this value will automatically adjust other symbology

properties based on the new information.

valueField

(Read and Write)

A string that represents a valid dataset field name used for the

layer's classification symbology. Changing this value will

automatically adjust other symbology properties based on the

new information.

String

Method Overview

Method Explanation

reclassify ()
Resets the layer's symbology to the layer's data source information and statistics.

Methods

reclassify ()

The reclassify method updates a layer's symbology properties based on the

underlying source data. It is useful when a layer's symbology is updated using

the UpdateLayer function with symbology stored in another layer or layer file

(.lyr). This method will automatically update the symbology properties based on

the layer's actual data source information and statistics and not the information

that is persisted in a layer file. The method needs to be used cautiously because it

has the potential to overwrite other symbology properties.

The reclassify method will

regenerate classBreakValues, classBreakLabels,

and classBreakDescriptions. It will not

affectnumClasses or normalization. The reclassify method has no affect

on a manual classification.

Code Sample

GraduatedSymbolsSymbology example 1

The following script modifies the symbology for all layers in a map document. It

iterates through each layer, changes the value field, changes the number of

classes, and saves the map document.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for lyr in arcpy.mapping.ListLayers(mxd):

 if lyr.symbologyType == "GRADUATED_SYMBOLS":

 lyr.symbology.valueField = "POP2007"

 lyr.symbology.numClasses = 5

del mxd

GraduatedSymbolsSymbology example 2

The following script modifies the symbology for a layer in a map document. It first

updates the layer's symbology using a layer file on disk with

the UpdateLayer function. Next, it verifies that the layer has graduated symbols

symbology. Finally, the script modifies a number of the properties on

the GraduatedSymbolsSymbology class and exports the result to PDF.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Census")[0]

lyr = arcpy.mapping.ListLayers(mxd, "StatePopulation", df)[0]

lyrFile = arcpy.mapping.Layer(r"C:\Project\LYRs\Population.lyr")

arcpy.mapping.UpdateLayer(df, lyr, lyrFile, True)

if lyr.symbologyType == "GRADUATED_SYMBOLS":

 lyr.symbology.valueField = "POP2000"

 lyr.symbology.classBreakValues = [250000, 999999, 4999999, 9999999,

35000000]

 lyr.symbology.classBreakLabels = ["250,000 to 999,999", "1,000,000

to 4,999,999",

 "5,000,000 to 9,999,999",

"10,000,000 to 35,000,000"]

arcpy.mapping.ExportToPDF(mxd,

r"C:\Project\Output\StatePopulation.pdf")

del mxd, lyrFile

GraphicElement (arcpy.mapping)
Top

Summary

The GraphicElement object provides access to properties that enables its

repositioning on the page layout as well as methods that allow for duplicating and

deleting existing graphic elements.

Discussion

The GraphicElement is a catch-all element type for most generic elements

added to a page layout. It includes items such as groups of elements, inserted

tables, graphs, neatlines, markers, lines, area shapes, and so on, that are added

to a page layout. The most common operations on a graphic element are to get or

set its page layout position and size. The ListLayoutElements function returns a

Python list of page layout element objects. It is necessary to then iterate through

each item in the list or specify an index number to reference a specific page

element object. To return a list of only GraphicElements, use the

GRAPHIC_ELEMENT constant for theelement_type parameter. A wildcard can

also be used to further refine the search based on the element name.

Existing graphic elements can be cloned and deleted. This capability was initially

added to support the creation of dynamic graphic tables on a page layout where

each cell in the table can be outlined using line graphics. To accomplish this, a

map document must be authored with at least two graphic line elements: a vertical

line and a horizontal line. As the information is read from a table, the lines can be

cloned using the clone method and sized and positioned appropriately using

other graphic element properties. When cloning an element it is very useful to

provide a suffix value so that cloned elements can be easily identified while

using the ListLayoutElements function with a wildcard and the

same suffix value. The returned list of elements can be further modified or

deleted using the delete method. There is a complete code sample for building a

dynamic graphic table at the bottom of this topic.

Grouped graphic elements cannot be cloned. That is because grouped elements

may include more than just graphic elements; they could also include items like

north arrows, scale bars and so on. Use the isGroup property to

determine if a graphic element is a group element before

tyring to clone it.

ListLayoutElements will return a flattened list of elements. For

example, ListLayoutElements on a graphic element that represents a group of

three text elements will return a total of four elements: the group element and each

individual text element. The GraphicElement can be used to reposition all items

at the same time or the text element text values can be managed individually.

It is recommended that each page layout element be given a unique name so that

it can be easily isolated using arcpy scripting. This is set via the Size and

Position tab on the Properties dialog box in ArcMap.

X and Y element positions are based on the element's anchor position which is

also set via the Size and Position tab on the Properties dialog box in ArcMap.

Page units can only be changed in ArcMap via Customize > ArcMap

Options > Layout View Tab.

Properties

Property Explanation
Data

Type

elementHeight

(Read and Write)

The height of the element in page units. The units assigned or

reported are in page units.

Double

elementPositionX

(Read and Write)

The x location of the data frame element's anchor position. The

units assigned or reported are in page units.

Double

elementPositionY

(Read and Write)

The y location of the data frame element's anchor position. The

units assigned or reported are in page units.

Double

elementWidth

(Read and Write)

The width of the element in page units. The units assigned or

reported are in page units.

Double

isGroup

(Read Only)

Returns True if the layout element is a group element. It is not

possible to clone or delete group elements.

Boolean

name

(Read and Write)

The name of the element.
String

type

(Read Only)

Returns the element type for any given page layout element.

 DATAFRAME_ELEMENT —Data frame element

 GRAPHIC_ELEMENT —Graphic element

 LEGEND_ELEMENT —Legend element

 MAPSURROUND_ELEMENT —Map surround element

 PICTURE_ELEMENT —Picture element

 TEXT_ELEMENT —Text element

String

Method Overview

Method Explanation

clone ({suffix})
Provides a mechanism to clone an existing graphic element on a page layout.

delete ()
Provides a mechanism to delete an existing graphic element on a page layout.

Methods

clone ({suffix})

Parame

ter
Explanation

Data

Type

suffix An optional string that is used to tag each newly created graphic element. The

new element will get the same element name as the parent graphic plus the

suffix value plus a numeric sequencer. For example, if the parent element name

is Line and thesuffix value is _copy, the newly cloned elements would be

named Line_copy, Line_copy_1, Line_copy_2, and so on. If

asuffix is not provided, then the results would look

like Line_1, Line_2, Line_3, and so on.

String

Grouped graphic elements can't be cloned. First check to see if a graphic element

is grouped by using the isGroup property.

delete ()

It may be necessary to delete cloned elements. Cloned elements, when created,

can be given a custom suffix so they can be easy to find when using the

wildcard parameter on the ListLayoutElements function.

Code Sample

GraphicElement example 1

The following script will move a group element named Title Block to a new

location on the page layout, then save the changes.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for elm in arcpy.mapping.ListLayoutElements(mxd, "GRAPHIC_ELEMENT"):

 if elm.name == "Title Block":

 elm.elementPositionX = 4.75

 elm.elementPositionY = 10.5

mxd.save()

del mxd

GraphicElement example 2

The following script will construct a graphic table based on data values from a

table in the map document. The map document was authored with a vertical line

named vertLine, a horizontal line named horzLine, and a text element

named TableText. Each of the elements were authored with the appropriate

symbology properties. The element's anchors were also set to the upper left

position and the text element's vertical and horizontal justification were set to top

left.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

#Reference items in the map document

lyr = arcpy.mapping.ListLayers(mxd, "Accidents")[0]

horzLine = arcpy.mapping.ListLayoutElements(mxd, "GRAPHIC_ELEMENT",

"horzLine")[0]

vertLine = arcpy.mapping.ListLayoutElements(mxd, "GRAPHIC_ELEMENT",

"vertLine")[0]

tableText = arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT",

"TableText")[0]

#Get/set information about the table

numRows = int(arcpy.GetCount_management(lyr).getOutput(0))

rowHeight = 0.2

fieldNames = ["X", "Y", "Accidents"]

numColumns = len(fieldNames)

colWidth = 1.5

#Build graphic table lines based on upper left coordinate

set the proper size of the original, parent line, then clone it and

position appropriately

upperX = 1.0

upperY = 5.0

#Vertical lines

vertLine.elementPositionX = upperX

vertLine.elementPositionY = upperY

vertLine.elementHeight = (rowHeight * numRows) + rowHeight #extra

line for column names

x = upperX

for vert in range(1, numColumns+1):

 x = x + colWidth

 vert_clone = vertLine.clone("_clone")

 vert_clone.elementPositionX = x

#Horizontal lines

horzLine.elementPositionX = upperX

horzLine.elementPositionY = upperY

horzLine.elementWidth = numColumns * colWidth

y = upperY - rowHeight

for horz in range(1, numRows +2): #need to accommodate the extra

line for field names

 temp_horz = horzLine.clone("_clone")

 temp_horz.elementPositionY = y

 y = y - rowHeight

#Place text column names

tableText.elementPositionX = upperX + 0.05 #slight offset

tableText.elementPositionY = upperY

tableText.text = fieldNames[0]

accumWidth = colWidth

for field in range(1, numColumns):

 newFieldTxt = tableText.clone("_clone")

 newFieldTxt.text = fieldNames[field]

 newFieldTxt.elementPositionX = newFieldTxt.elementPositionX +

accumWidth

 accumWidth = accumWidth + colWidth

#Create text elements based on values from the table

table = arcpy.SearchCursor(lyr.dataSource)

y = upperY - rowHeight

for row in table:

 x = upperX + 0.05 #slight offset

 try:

 for field in fieldNames:

 newCellTxt = tableText.clone("_clone")

 newCellTxt.text = row.getValue(field)

 newCellTxt.elementPositionX = x

 newCellTxt.elementPositionY = y
 accumWidth = accumWidth + colWidth

 x = x + colWidth

 y = y - rowHeight

 except:

 print"Invalid value assignment"

#Export to PDF and delete cloned elements

arcpy.mapping.ExportToPDF(mxd, r"C:\Temp\test.pdf")

for elm in arcpy.mapping.ListLayoutElements(mxd, wildcard="_clone"):

 elm.delete()

del mxd

LabelClass (arcpy.mapping)
Top

Summary

Provides access to a layer's label class properties

Discussion

The LabelClass object is essential for managing properties, such as label

expressions or SQL queries, that are associated with a layer's individual label

classes.

Access to these properties is essential when, for example, a map document's

layers are redirected to a new workspace. The label classes' SQL query may need

to be updated with the appropriate syntax for the new database it is being

executed against. For example, field names in a personal geodatabase are

surrounded by square brackets while field names in the file geodatabase are

surrounded with double quotes. In addition to field names, other SQL properties

(wildcard characters, other special characters, operators, and so on) may need to

be changed as well. If the SQL query is not updated, layers may fail to draw. For

more information on these special cases, refer to the Updating and fixing data

sources within arcpy.mapping topic.

The label expression is either using the VBScript, JScript or Python parsers. The

syntax and/or special characters for the parsers should not change (for example,

VBScript always uses square brackets), but realize that the field names may

change. Area and perimeter are commonly used fields in an expression, and

these do vary in name from data source to data source.

Not all layers support the labelClasses property, so it is useful to test this

ahead of time using the supports method—for

example, layer.supports("SHOWLABELS") or layer.supports("LABELCL

ASSES"). If a layer supports labels, it also will support the labelClasses property,

so you don't need to test for both.

The labelClasses property will return a list of LabelClass objects. To reference

a specific LabelClass object, it will be necessary to loop through each item in the

list or provide a specific index number.

Properties

Property Explanation
Data

Type

className

(Read and Write)

Provides the ability to get or set a layer's individual label class

name.

String

expression

(Read and Write)

Provides the ability to get or set a layer's individual label class

expression. This can be as simple as a single field or more advanced

using either a VBScript, JScript or Python expression.

String

SQLQuery

(Read and Write)

Provides the ability to get or set a layer's individual label class

SQLQuery. This is useful for restricting labels to certain features.

String

showClassLabels

(Read and Write)

Provides the ability get or set the visibility of individual label

classes.

Boolean

Code Sample

LabelClass example 1

The following script will print the label class properties for only those layers that

have labels and individual label classes turned on. The script first confirms that the

layer supports the labelClasses property.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for lyr in arcpy.mapping.ListLayers(mxd):

 if lyr.supports("LABELCLASSES"):

 if lyr.showLabels:

 print "Layer name: " + lyr.name

 for lblClass in lyr.labelClasses:

 if lblClass.showClassLabels:

 print " Class Name: " + lblClass.className

 print " Expression: " + lblClass.expression

 print " SQL Query: " + lblClass.SQLQuery

del mxd

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

LabelClass example 2

The following script will modify the SQL query that once pointed to a personal

geodatabase, but now its layer references a file geodatabase. Square brackets will

be changed to double quotes and the wildcard character will be modified from an

asterisk (*) to a percent symbol (%). A new output map document is saved,

preserving the original map document.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for lyr in arcpy.mapping.ListLayers(mxd):

 if lyr.supports("LABELCLASSES"):

 for lblClass in lyr.labelClasses:

 lblClass.SQLQuery = lblClass.SQLQuery.replace("[", "\"")

 lblClass.SQLQuery = lblClass.SQLQuery.replace("]", "\"")

 lblClass.SQLQuery = lblClass.SQLQuery.replace("*", "%")

mxd.saveACopy("c:/project/project2.mxd")

del mxd

Layer (arcpy.mapping)
Top

Summary

Provides access to layer properties and methods. It can either reference layers in

a map document (.mxd) or layers in a layer (.lyr) file.

Discussion

The Layer object is essential for managing layers that reside within a map

document (.mxd) or within a layer (.lyr) file. The layer object provides access

to many of the common layer properties found in the ArcMap Layer

Properties dialog box and it also provides methods for saving layer files.

The Layer function, the ListLayers function and

the listLegendItemLayers method on the Legend object all provide ways to

reference a Layer object.

There are numerous types of layers and not all of them support the same set of

properties. For example, a feature layer supports a definition query whereas a

raster layer does not, but a raster catalog does. Rather than having to work with

different, individual layer objects for all possible layer types and property

combinations, a supports method is available to help identify which layer types

support which individual layer properties. The supports method gives you the

ability to test if the layer supports a property before trying to get or set its value on

a layer type that doesn't support it, therefore reducing the need for additional error

trapping.

There are essentially three categories of layers in a map document: feature layers,

group layers, and raster layers. The isFeatureLayer, isGroupLayer,

and isRasterLayer properties allow you to identify or isolate the majority of

layer types but not all layer types. There are a few specialized layers and datasets

that don't fall into one of these three categories: annotation subclasses, dimension

features, network datasets, terrain datasets, topology datasets, and so on. In

these cases you may need to test other properties to isolate a layer of interest

before doing something to it.

Not all layer properties are accessible through the Layer object. There are many

properties available in the ArcMap Layer Properties dialog box that are not

exposed to the arcpy scripting environment (for example, display properties, field

aliases, selection symbology, and so on). The UpdateLayer function allows you to

replace all layer properties available in the ArcMap Layer Properties dialog box

using a layer (.lyr) file that contains the customizations.

Group layers and other sublayers (for example, annotation classes) are treated

just like ordinary layers. The ListLayers function returns index values that are

generated from top to bottom as they appear in the table of contents or the way

they appear in a layer (.lyr) file. The same applies if a group layer is within

another group layer. For example, a map document with a single group layer that

contains three sublayers will return a list of four layer names, the group layer being

the first and the three sublayers being the second, third, and fourth. There are two

ways of determining if a layer is a group layer. First, you can check to see if the

layer supports the isGroupLayerproperty. Second, you can evaluate

the longNameproperty. A layer's longName value will include the group name in

addition to the layer name. For example, a layer named Layer1 in a group layer

named Group1 will have alongNamevalue of Group1\Layer1. If the name value

is equal to longName value, then the layer is not a group layer or the layer is not

inside a group layer.

Some layers within a map document or layer file may be password protected

because the user and password information is not saved within the layer file or

map document. Map documents that contain these layers will prompt the user to

enter the appropriate information while the document is opening. The

arcpy.mapping scripting environment will, by default, suppress these dialog boxes

during execution, but that means that the layers will be treated as though they

have broken data sources. In other words, secured layers will not be rendered in

any output. If it is necessary for these layers to render appropriately, then there

are a couple of options. First, save the user name and password information with

the layers. Second, the CreateArcSDEConnectionFile geoprocessing function

allows you to create a connection file that is also persisted in memory. If this

function is executed prior to opening a map document (.mxd) with

the MapDocument function or a layer file with the Layer function, then SDE layers

will render. Currently, there is no alternative for secured web services.

The variable that references a layer file on disk will place a lock on the (.lyr) file.

It is good practice to remove the object reference using the Python del command

at the end of a script or within a Python try/exceptstatement.

Changing a layer's data source is a common requirement. There are two methods

on the Layer object that help with this.

The findAndReplaceWorkspacePath method is intended for replacing part or

all of a layer's workspace path. The replaceDataSource method allows you to

change a layer's workspace and source dataset. For a more detailed discussion,

parameter information, scenarios, and code samples, please refer to theUpdating

and fixing data sources with arcpy.mapping help topic.

Depending on the symbology type, a layer's symbology can be modified. There

are a limited number of supported symbology types for which properties and

methods are available. It is good practice to first test the

layer'ssymbologyType property. If a value of OTHER is returned, then the layer's

symbology can't be modified. If the value returned is not OTHER, then the

layer's symbology property will return one of the following symbology classes,

each with their own unique set of methods and

properties: GraduatedColorsSymbology, GraduatedSymbolsSymbology, RasterCl

assifiedSymbology, and UniqueValuesSymbology.

http://resources.arcgis.com/en/help/main/10.2/0017/0017000000pt000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

Time-management operations can be performed for time-enabled layers. Not all

layer types support time properties. Therefore, it is good practice to first test if the

layer supports time using the supports method. If the layer does support time,

then time properties can be accessed from the LayerTime class.

Syntax

Layer (lyr_file_path)

Parameter Explanation
Data

Type

lyr_file_path A string that includes the full path and file name of an existing layer

(.lyr) file.

String

Properties

Property Explanation
Data

Type

brightness

(Read and Write)

Provides the ability to get or set the brightness value. The

default, normal brightness, is 0%. Enter any value between

+100% and -100%. Enter a plus or minus sign to the left of

the value to specify whether it is above or below 0. Not all

layers support thebrightness property (for example,

group layers and feature layers), so it is good practice to test

for this ahead of time using thesupports method.

Integer

contrast

(Read and Write)

Provides the ability to get or set the contrast value. The

default, neutral contrast, is 0%. Enter any value between

+100% and -100%. Enter a plus or minus sign to the left of

the value to specify whether it is above or below 0. Not all

layers support thecontrast property (for example,

annotation layers and fabric layers), so it is good practice to

test for this ahead of time using the supports method.

Integer

credits

(Read and Write)

Provides the ability to either get or set the layer's credits or

copyright information.

String

datasetName

(Read Only)

Returns the name of the layer's dataset the way it appears in

the workspace, not in the TOC. Not all layers support

thedatasetName property (for example, web services),

so it is good practice to test for this ahead of time using

the supportsmethod.

String

dataSource

(Read Only)

Returns the complete path for the layer's data source. It

includes the workspacePath and

the datasetName properties combined. Not all layers

support the dataSource property (for example,

annotation classes and web services), so it is good practice

to test for this ahead of time using the supports method.

String

definitionQuery

(Read and Write)

Provides the ability to get or set a layer's definition query.

Not all layers support the definitionQuery property

(for example, raster layers and group layers), so it is good

practice to test for this ahead of time using

the supports method.

String

description

(Read and Write)

Provides the ability to either get or set the layer's

description information. Not all layers support

the description property (for example, topology

layers), so it is good practice to test for this ahead of time

using the supports method.

String

isBroken

(Read Only)

Returns True if a layer's data source is broken. Boolean

isFeatureLayer

(Read Only)

Returns True if a layer is a feature layer. Boolean

isGroupLayer

(Read Only)

Returns True if a layer is a group layer. Boolean

isNetworkAnalystLayer

(Read Only)

Returns True if a layer is an ArcGIS Network Analyst

extension layer type.

Boolean

isRasterizingLayer

(Read Only)

Returns True if a layer will cause rasterization of other

vector layers in the data frame when the map is printed or

exported. Rasterization of vector layers during output most

often occurs when layer transparency is used but can also

happen when a layer has raster-based picture symbols or

field-based transparency.

Boolean

isRasterLayer

(Read Only)

Returns True if a layer is a raster layer. Boolean

isServiceLayer

(Read Only)

Returns True if a layer is a GIS service layer. GIS services

are automated geographic information services that are

published and accessed over the web using standard

technologies and protocols.

Boolean

labelClasses

(Read and Write)

Provides access to a layer's label class properties by

returning a list of LabelClass objects.

Individual LabelClass object properties can be read and

modified and written back to the layer. Not all layers

support the labelClasses property (for example, raster

layers and annotation layers), so it is good practice to test

for this ahead of time using the supports method.

LabelClass

longName

(Read Only)

This property is valuable when trying to determine whether

a layer belongs to a group layer. If a layer does not belong

to a group layer, the long name will equal the layer name. If

a layer does belong to a group layer, the group layer

structure will be included in the long name. For example,

String

the name of a layer nested inside a group layer within

another group layer may look something

like Group1\Group2\LayerName. All layer types

support this property.

maxScale

(Read and Write)

Provides the ability to set or get the layer's maximum scale

threshold.

Double

minScale

(Read and Write)

Provides the ability to set or get the layer's minimum scale

threshold.

Double

name

(Read and Write)

Provides the ability to set or get the name of a layer the way

it would appear in the ArcMap table of contents. Spaces can

be included. All layer types support this property.

String

serviceProperties

(Read Only)

Provides access to connection information for ArcSDE and

web service layers. The returned results are dictionary key-

value pairs. There are two different dictionaries returned

based on the type of layer. The first is for ArcSDE

connections, and the second is for all web service layer

types. The web services dictionary contains keys that work

for all service layer types and also includes specific keys

that work for only a particular web service type (for

example, WMS has a key called WMSTitle). Either your

script can check the ServiceType key before evaluating

specific keys or you can use the get method that allows

you to bypass keys that are not available. Not all layers

support the serviceProperties property (for

example, layers that are not ArcSDE or web service layers),

so it is good practice to test for this ahead of time using

the supports method.

Keys for an ArcSDE dictionary

 ServiceType —The property displaying the type of
service. This will only be SDE for ArcSDE layer types.

 Server —The name or IP address of the computer
where the ArcSDE geodatabase is located.

 Service —The name or port number of the process
running on the ArcSDE server.

 Database —The name of the enterprise RDBMS
database. This is not required when using Oracle.

 UserName —A user account. This will be blank if using
operating system authentication.

 AuthenticationMode —Geodatabase or operating
system authentication.

 Version —The version of the geodatabase to which you
are connecting.

Keys for a web service dictionary

 ServiceType —Property displaying the type of service.
These include ImageServer, IMS, MapServer,
TiledInternetLayer, WMS, and WCS.

 URL —Property displaying the URL to the service. If the

Dictionary

connection to ArcGIS for Server is through a local area
network (LAN), this value will be null.

 Server —Property displaying the server name. If the
connection to ArcGIS for Server is through the Internet
(HTTP), this value will be null.

 UserName —Property displaying the user name used
to access a secured service. If the service is not
password protected, this property will be null.

 ServiceName —IMS service layers only. Property
displays the name of the IMS service.

 WMSName —WMS service layers only. Property
displays the text string for the WMS service used for
machine-to-machine communication.

 WMSTitle —WMS service layers only. Property displays
the description title string for the WMS service.

 Name —WMS service layers only. Property displays the
text string for the WMS layer used for machine-to-
machine communication.

 Title —WMS service layers only. Property displays the
description title string for the WMS layer.

showLabels

(Read and Write)

Controls the display of labels for a layer. If set to True,

labels will display; if set to False, labels will not be

drawn. Not all layers support the showLabels property

(for example, raster layers and annotation layers), so it is

good practice to test for this ahead of time using

the supports method. Layer types that support

the showLabels property also support

the labelClassesproperty.

Boolean

symbology

(Read Only)

Returns a reference to the layer's symbology class. Each

supported layer symbology class has its own unique set of

properties. It is best to first determine the

layer's symbologyType before attempting to modify the

symbology class properties.

Object

symbologyType

(Read Only)

Returns a string that represents the layer's symbology class

type. Not all layer symbology class types are supported; for

those that are not, the keyword OTHER is returned. The

following is a list of possible values:

 GRADUATED_COLORS —
The GraduatedColorsSymbology class.

 GRADUATED_SYMBOLS —
The GraduatedSymbolsSymbology class.

 OTHER —A string that represents an unsupported layer
symbology class.

 UNIQUE_VALUES —The UniqueValuesSymbology class.

 RASTER_CLASSIFIED —
The RasterClassifiedSymbology class for raster layers.

Object

time

(Read Only)

Returns the LayerTime class that provides access to time

properties of time-enabled layers.
Object

transparency

(Read and Write)

Provides the ability to get or set the transparency value.

This enables you to see through a layer to the layers

underneath. Type 0if you don't want a layer to be

transparent. A transparency value of more than 90 percent

usually results in the layer not being drawn at all. Not all

layers support the transparency property (for example,

fabric group layers and web service sublayers), so it is good

practice to test for this ahead of time using

the supports method.

Integer

visible

(Read and Write)

Controls the display of a layer. This has the same effect as

checking the check box next to the layer in the table of

contents in ArcMap. If set to True, the layer will draw; if

set to False, the layer will not be drawn. Not all layers

support the visible property (for example, restricted web

service layers), so it is good practice to test for this ahead of

time using the supports method.

Boolean

workspacePath

(Read Only)

Returns a path to the layer's workspace or connection file.

Not all layers support the workspacePath property (for

example, web services), so it is good practice to test for this

ahead of time using the supports method.

String

Method Overview

Method Explanation

findAndReplaceWorkspacePath

(find_workspace_path,

replace_workspace_path, {validate})

Finds and replaces a layer's workspace path with a

new workspace path.

getExtent ({symbolized_extent})
Returns a layer's geometric or symbolized extent.

getSelectedExtent ({symbolized_extent})
Returns a layer's geometric or symbolized extent for

selected features.

replaceDataSource (workspace_path,

workspace_type, {dataset_name},

{validate})

Replaces a data source for a layer in a map document

(.mxd) or layer (.lyr) file. It also provides the

ability to switch workspace types (e.g., replaces a file

geodatabase data source with an SDE data source).

save () Saves a layer (.lyr) file.

saveACopy (file_name, {version}) Saves a layer (.lyr) file to a different file name and,

optionally, a previous version.

supports (layer_property) Not all layers support the same set of properties.

The supports property can be used to test which

properties a layer does support.

Methods

findAndReplaceWorkspacePath (find_workspace_path,

replace_workspace_path, {validate})

Parameter Explanation
Data

Type

find_workspace_path A string that represents the workspace path or connection

file you want to find. If an empty string is passed, then all

workspace paths will be replaced with

the replace_workspace_path parameter depending

on the value of the validate parameter.

String

replace_workspace_path
A string that represents the workspace path or connection

file you want to replace.

String

validate If set to True, the workspace will only be updated if

the replace_workspace_path value is a valid

workspace. If it is not valid, the workspace will not be

replaced. If set to False, the method will set the

workspace to match the replace_workspace_path,

regardless of a valid match. In this case, if a match does not

exist, then the layer's data source would be broken.

(The default value is True)

Boolean

For more detailed discussion, parameter information, scenarios, and code

samples, please refer to the Updating and fixing data sources with

arcpy.mapping help topic.

getExtent ({symbolized_extent})

Parameter Explanation
Data

Type

symbolized_extent A value of True will return the layer's symbolized extent;

otherwise, it will return the geometric extent. The symbolized

extent takes into account the area the symbology covers so that it

does not get cut off by the data frame's boundary.

(The default value is True)

Boolean

Return Value

Data Type Explanation

Extent

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm

The getExtent method will honor a layer's definition query so if a subset of

features are queried, getExtent will return the extent for only those features.

A symbolized extent takes into account the area of the feature's symbol when

building the extent rectangle. Returning a symbolized extent may be best for

cartographic results because symbols won't be cut off at the data frame's edges. A

geometric extent may be best for analysis.

getSelectedExtent ({symbolized_extent})

Parameter Explanation
Data

Type

symbolized_extent A value of True will return the layer's symbolized extent;

otherwise, it will return the geometric extent. The symbolized

extent takes into account the area the symbology covers so that it

does not get cut off by the data frame's boundary.

(The default value is True)

Boolean

Return Value

Data Type Explanation

Extent

A symbolized extent takes into account the area of the feature's symbol when

building the extent rectangle. Returning a symbolized extent may be best for

cartographic results because symbols won't be cut off at the data frame's edges. A

geometric extent may be best for analysis.

replaceDataSource (workspace_path, workspace_type, {dataset_name},

{validate})

Parameter Explanation
Data

Type

workspace_path
A string that includes the workspace path to the new data or

connection file.

String

workspace_type
A string keyword that represents the workspace type of the new

data.

 ACCESS_WORKSPACE — A personal geodatabase or Access
workspace

 ARCINFO_WORKSPACE — An ArcInfo coverage workspace

 CAD_WORKSPACE —A CAD file workspace

 EXCEL_WORKSPACE —An Excel file workspace

 FILEGDB_WORKSPACE —A file geodatabase workspace

 NONE —Used to skip the parameter

 OLEDB_WORKSPACE —An OLE database workspace

 PCCOVERAGE_WORKSPACE —A PC ARC/INFO Coverage
workspace

 RASTER_WORKSPACE —A raster workspace

 SDE_WORKSPACE —An SDE geodatabase workspace

 SHAPEFILE_WORKSPACE —A shapefile workspace

 TEXT_WORKSPACE —A text file workspace

 TIN_WORKSPACE —A TIN workspace

 VPF_WORKSPACE —A VPF workspace

String

dataset_name A string that represents the name of the dataset the way it appears in

the new workspace (not the name of the layer in the TOC).

If dataset_name is not provided,

the replaceDataSource method will attempt to replace the

dataset by finding a table with a the same name as the layer's current

dataset property.

String

validate If set to True, a workspace will only be updated if

the workspace_path value is a valid workspace. If it is not

valid, the workspace will not be replaced. If set to False, the

method will set the source to match the workspace_path,

regardless of a valid match. In this case, if a match does not exist,

then the data source would be broken.

(The default value is True)

Boolean

For more detailed discussion, parameter information, scenarios, and code

samples, please refer to the Updating and fixing data sources with

arcpy.mapping help topic.

http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

save ()

There is a subtle difference between a layer (.lyr) file and a map layer (a layer in

a map document). The save method only works when a variable references a

layer file and will not work with a map layer. When a layer is loaded from a layer

file it will remember the file name and use that when the save method is called. If

a map layer is being referenced, a file name is not initially set, so you will need to

use the saveACopy method instead.

saveACopy (file_name, {version})

Parameter Explanation
Data

Type

file_name A string that includes the location and name of the output layer (.lyr)

file.

String

version
A string that sets the output version number. The default value will use

the current version.

 10.1 —Version 10.1/10.2

 10.0 —Version 10.0

 8.3 —Version 8.3

 9.0 —Version 9.0/9.1

 9.2 —Version 9.2

 9.3 —Version 9.3

(The default value is None)

String

Provides an option to save a layer (.lyr) file to a different file name and,

optionally, a previous version. Features that are not supported in prior versions of

the software will be removed from the newly saved layer.

supports (layer_property)

Parameter Explanation
Data

Type

layer_property
The name of a particular layer property that will be tested.

 BRIGHTNESS —A raster layer's brightness value

 CONTRAST —A raster layer's contrast value

 DATASETNAME —A layers dataset name the way it appears in
the workspace

 DATASOURCE —A layer's file path or connection file

 DEFINITIONQUERY —A layer's definition query string

 DESCRIPTION —A layer's description string

 LABELCLASSES —A layer's list of label classes

 LONGNAME —A layer's path including the group layer(s) it may
be nested within

 NAME —A layer's name

 SERVICEPROPERTIES —Connection information for SDE and web
service layers

 SHOWLABELS —A Boolean indicating if a layer's lables are
toggled on or off

 SYMBOLOGY —A layer's symbology class

 SYMBOLOGYTYPE —A layer's symbology class type

 TIME —A layer's time properties

 TRANSPARENCY —A layer's transparency value

 VISIBLE —A Boolean indicating if a layer is toggled on or off in
the TOC

 WORKSPACEPATH —A layer's workspace or connection file path

(The default value is name)

String

Return Value

Data Type Explanation

Boolean

There are numerous types of layers and not all of them support the same

properties. For example, a feature layer supports a definition query whereas a

raster layer does not, but a raster catalog does. Rather than creating individual

layer objects for all possible layer types and property combinations,

a support method was created to help identify which layer types support which

properties. The support method gives you the option of testing the property before

trying to get or set its value on a layer type that doesn't support it. The supports

property will return a true if a layer supports that property.

Code Sample

Layer example 1

The following script will reference a layer (.lyr) file, find all layers

called Highways, turns on labels, and save the results to a new layer file.

import arcpy

lyrFile = arcpy.mapping.Layer(r"C:\Project\Data\Streets.lyr")

for lyr in arcpy.mapping.ListLayers(lyrFile):

 if lyr.name.lower() == "highways":

 lyr.showLabels = True

 lyr.saveACopy(r"C:\Project\Data\StreetsWithLabels.lyr")

del lyrFile

#Or with one less line using a wild card:

import arcpy

lyrFile = arcpy.mapping.Layer(r"C:\Project\Data\Streets.lyr")

for lyr in arcpy.mapping.ListLayers(lyrFile, "Highways"):

 lyr.showLabels = True

 lyr.saveACopy(r"C:\Project\Data\StreetsWithLabels.lyr")

del lyrFile

Layer example 2

The following script will allow secured layers to render correctly by creating an

SDE connection in memory before opening a map document that requires

password information. This script simply defines the connection information, then

exports the map document to a PDF file. It is good practice to delete this reference

from memory before the script closes.

import arcpy, os

#Remove temporary connection file if it already exists

sdeFile = r"C:\Project\Output\TempSDEConnectionFile.sde"

if os.path.exists(sdeFile):

 os.remove(sdeFile)

#Create temporary connection file in memory

arcpy.CreateArcSDEConnectionFile_management(r"C:\Project\Output",

"TempConnection", "myServerName", "5151", "myDatabase",

"DATABASE_AUTH", "myUserName", "myPassword", "SAVE_USERNAME",

"myUser.DEFAULT", "SAVE_VERSION")

#Export a map document to verify that secured layers are present

mxd = arcpy.mapping.MapDocument(r"C:\Project\SDEdata.mxd")

arcpy.mapping.ExportToPDF(mxd, r"C:\Project\output\SDEdata.pdf")

os.remove(sdeFile)

del mxd

Layer example 3

The following script will print the name of each SDE or web service layer along

with the appropriate service information. Similar to the example above, since some

SDE layers may be secured with password information, a temporary SDE

connection file is created. This example does not print information about non-SDE

or web service layers.

import arcpy, os

#Remove temporary connection file if it already exists

sdeFile = r"C:\Project\Output\TempSDEConnectionFile.sde"

if os.path.exists(sdeFile):

 os.remove(sdeFile)

#Create temporary connection file in memory

arcpy.CreateArcSDEConnectionFile_management(r"C:\Project\Output",

"TempConnection", "myServerName", "5151", "myDatabase",

"DATABASE_AUTH", "myUserName", "myPassword", "SAVE_USERNAME",

"myUser.DEFAULT", "SAVE_VERSION")

#Report service properties for layers in a map that support

SERVICEPROPERTIES

mxd = arcpy.mapping.MapDocument(r"C:\Project\ServerData.mxd")

for lyr in arcpy.mapping.ListLayers(mxd):

 if lyr.supports("SERVICEPROPERTIES"):

 servProp = lyr.serviceProperties

 print "Layer name:" + lyr.name

 print "---"

 if lyr.serviceProperties["ServiceType"] != "SDE":

 print "Service Type: " + servProp.get('ServiceType',

'N/A')

 print " URL: " + servProp.get('URL', 'N/A')

 print " Connection: " + servProp.get('Connection',

'N/A')

 print " Server: " + servProp.get('Server', 'N/A')

 print " Cache: " + str(servProp.get('Cache',

'N/A'))

 print " User Name: " + servProp.get('UserName',

'N/A')

 print " Password: " + servProp.get('Password',

'N/A')
 print ""

 else:

 print "Service Type: " + servProp.get('ServiceType',

'N/A')

 print " Database: " + servProp.get('Database',

'N/A')

 print " Server: " + servProp.get('Server',

'N/A')

 print " Service: " + servProp.get('Service',

'N/A')

 print " Version: " + servProp.get('Version',

'N/A')

 print " User name: " + servProp.get('UserName',

'N/A')

 print " Authentication: " +

servProp.get('AuthenticationMode', 'N/A')

 print ""

del mxd

Layer example 4

The following script modifies the symbology for a layer in a map document. It first

updates the layer's symbology using a layer file on disk with

the UpdateLayer function. The layer file contains a custom color ramp that is

applied to the layer. Next, it verifies that the layer has graduated color symbology.

Finally, the script modifies a number of the properties on

the GraduatedColors symbology class and exports the result to PDF.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Census")[0]

lyr = arcpy.mapping.ListLayers(mxd, "StatePopulation", df)[0]

lyrFile = arcpy.mapping.Layer(r"C:\Project\LYRs\Population.lyr")

arcpy.mapping.UpdateLayer(df, lyr, lyrFile, True)

if lyr.symbologyType == "GRADUATED_COLORS":

 lyr.symbology.valueField = "POP2000"

 lyr.symbology.numClasses = 4

 lyr.symbology.classBreakValues = [250000, 999999, 4999999, 9999999,

35000000]

 lyr.symbology.classBreakLabels = ["250,000 to 999,999", "1,000,000

to 4,999,999",

 "5,000,000 to 9,999,999",

"10,000,000 to 35,000,000"]

arcpy.mapping.ExportToPDF(mxd,

r"C:\Project\Output\StatePopulation.pdf")

del mxd, lyrFile

Layer example 5

The following script tests if a layer file supports time and if time properties have

been set. It then uses time information (start time and end time) to calculate the

time extent of a time-enabled layer.

import arcpy, datetime

lyr =

arcpy.mapping.Layer(r'C:\Project\Data\Time\TemperatureWithTime.lyr')

if lyr.supports("TIME"):

 lyrTime = lyr.time

 if lyr.time.isTimeEnabled:

 startTime = lyrTime.startTime

 endTime = lyrTime.endTime

 timeDelta = endTime - startTime

 print "Start Time: " + str(startTime)

 print "End Time: " + str(endTime)

 print "Time Extent: " + str(timeDelta)

 else:

 print "No time properties have been set on the layer"

else:

 print "Time is not supported on this layer"

LayerTime (arcpy.mapping)
Top

Summary

The LayerTime object provides access to time management operations for time-

enabled layers.

Discussion

The LayerTime object provides information about how time is stored and

configured in a time-enabled layer. The time properties on a layer can be set on

the Time tab of the Layer Properties dialog box in ArcMap, ArcScene, or ArcGlobe.

Learn more about setting time properties on a layer

The time properties on a layer are read-only. The UpdateLayerTime function

allows you to replace all layer properties available on the Time tab of the Layer

Properties dialog box using a layer (.lyr) file or another layer in a map document

that contains time information.

Time information, such as the time fields containing the time values associated

with the features, start and end time of the data, and the time-step interval, and so

on, can be used for not only gaining knowledge about the time properties on the

time-enabled layer but also for performing further data management and analysis

tasks over time. Example one below shows how you can get the time extent of

your time-enabled layer using the startTime andendTime. Example two below

shows how you can formulate a time query using the time field and select a set of

features based on time and then save those features to a separate feature class.

Also, you can use the time information to ensure that the time specified for

selecting the features lies within the start and end time of the layer.

Furthermore, you can use several LayerTime properties together to loop through

the data in your time-enabled layer based on time. Example three shows how you

can step through your data based on time using thetimeStepInterval property

and generate surfaces from features valid at various time steps. Note that

the timeStepInterval property returns a EsriTimeDelta object.

Properties

Property Explanation Data Type

daylightSavings

(Read Only)

Indicates whether the time values in the time field of

the time-enabled layer were collected while observing

Daylight Saving Time rules in the input time zone.

Boolean

displayDataCumulatively

(Read Only)

Indicates whether or not data in the time-enabled layer

is displayed cumulatively in the display.

Boolean

endTime

(Read Only)

Gets the end date and time for a time-enabled layer.
DateTime

endTimeField

(Read Only)

The name of the field containing the end time values.

End time field is used along with the start time field to

store start and end time values for features that are

valid for a certain duration.

String

isTimeEnabled

(Read Only)

Indicates whether or not time is enabled on the layer.
Boolean

startTime

(Read Only)

Gets the start date and time for a time-enabled layer.
DateTime

startTimeField

(Read Only)

The name of the field containing the time values. This

field is used for features that are valid at a particular

instant in time.

String

timeFormat

(Read Only)

The format in which the time values were stored in the

input time field. The time format is important when

formulating a time query.

String

timeOffset

(Read Only)

The time offset applied to the time values in your data.

This value is a EsriTimeDelta object and is used to

iterate over a period of time (for example, 2 days, 1

month, and so on).

EsriTimeDelta

timeStepInterval

(Read Only)

The time-step interval defines the granularity of the

temporal data. The time-step interval can be thought of

as how often the time values were recorded in your

data. This value is a EsriTimeDelta object and is used

to iterate over a period of time (for example, 2 days, 1

month, and so on).

EsriTimeDelta

timeZone

(Read Only)

The Time Zone set on the time-enabled layer.
String

http://resources.arcgis.com/en/help/main/10.2/005z/005z0000000p000000.htm

Code Sample

LayerTime example 1

The following script tests if a layer file supports time and if time properties have

been set. It then uses time information (start time and end time) to calculate the

time extent of a time-enabled layer.

import arcpy, datetime

lyr =

arcpy.mapping.Layer(r'C:\Project\Data\Time\TemperatureWithTime.lyr')

if lyr.supports("TIME"):

 lyrTime = lyr.time

 if lyr.time.isTimeEnabled:

 startTime = lyrTime.startTime

 endTime = lyrTime.endTime

 timeDelta = endTime - startTime

 print "Start Time: " + str(startTime)

 print "End Time: " + str(endTime)

 print "Time Extent: " + str(timeDelta)

 else:

 print "No time properties have been set on the layer"

else:

 print "Time is not supported on this layer"

LayerTime example 2

The following script creates a feature class from input features valid at a certain

time, while ensuring that the selection time is within the time extent (start time and

end time) of the time-enabled layer.

import arcpy, datetime

output_GDB = r"C:\Project\Output\Output.gdb"

lyr = arcpy.mapping.Layer(r"C:\Project\Data\Time\TimeLayer.lyr")

lyrTime = lyr.time

Set the time for which you want to select features in the time-

enabled layer
timeSelection = datetime.datetime(2009, 9, 10, 12, 0)

Get the start and end time of the time enabled layer

startTime = lyrTime.startTime

endTime = lyrTime.endTime

Get the time field containing the time values associated with data

in the time-enabled layer

timeField = str(lyrTime.startTimeField)

Check to see if the time for which you want to select features lies

within the start and end time of the time enabled layer

if (timeSelection < startTime or timeSelection > endTime):

 print "The time specified for selecting features is not within the

time extent of the layer"

else:

 # Formulate the time query

 timeQuery = "\"" + timeField + "\"" + "= date '" +

str(timeSelection) + "'"

 # Process: Feature Class to Feature Class

 arcpy.FeatureClassToFeatureClass_conversion(lyr, output_GDB,

"timeSubset", timeQuery, "", "")

LayerTime example 3

The following script uses the time information (start time, end time, time-step

interval) to step through data in a time-enabled layer to generate raster surfaces

from points that are valid at each time step and then stores these rasters in a

mosaic dataset.

import arcpy, datetime

Check out the ArcGIS Spatial Analyst extension for using the IDW

interpolation tool

arcpy.CheckOutExtension("spatial")

Get the layer time properties

lyr = arcpy.mapping.Layer(r"C:\Project\Data\Time\TimeLayer.lyr")

lyrTime = lyr.time

Calculate the number of iterations based on the time extent and

timestep interval

startTime = lyrTime.startTime

endTime = lyrTime.endTime

timeExtent = endTime - startTime

timeStepInterval = lyrTime.timeStepInterval

iterations = timeExtent.days / timeStepInterval.interval

Get the time field containing the time values associated

with the data in the time-enabled layer

startTimeField = str(lyrTime.startTimeField)

Specify the output mosaic dataset to which the interpolated rasters

will be added

outputMosaicDataset =

r"C:\Project\Output\Output.gdb\outputMosaicDataset"

i = 0

while i <= iterations:

 # Formulate the time query and increment the time by the

timeStepInterval

 currentTime = str(startTime + (i*timeStepInterval))

 timeQuery = "\"" + startTimeField + "\"" + " = date '" +

currentTime + "'"

 # Create an in-memory feature layer containing points that are

valid at each timestep

 tempFeatureLyr = "tempTimeLayer" + str(i)

 arcpy.MakeFeatureLayer_management(lyr, tempFeatureLyr, timeQuery)

 # Create an interpolated raster surface using the points valid at

each timestep

 outRaster = r"C:\Project\Output\Output.gdb\raster" + str(i)

 print outRaster

 arcpy.gp.Idw_sa(tempFeatureLyr, "Temperature", outRaster)

 # Add the newly created raster surface to a Mosaic Dataset

 arcpy.AddRastersToMosaicDataset_management(outputMosaicDataset,

"Raster Dataset", outRaster)

 i = i + 1

Calculate the statistics on the output Mosaic Dataset for

classifying your data after new rasters are added

arcpy.CalculateStatistics_management(outputMosaicDataset,"1","1","#")

LegendElement (arcpy.mapping)
Top

Summary

The LegendElement object provides access to properties and methods that

enable its repositioning and resizing on the page layout as well as modifying its

title and legend items.

Discussion

Like a MapsurroundElement, the LegendElement object has an association with

a single parent data frame. In addition, the LegendElement also has methods

and properties for managing the contents within the legend. These are useful for

controlling how new items get added to the legend, sizing the legend, updating

legend item properties using a style item, and also for specifying the number of

columns in a legend.

The ListLayoutElements function returns a Python list of page layout element

objects. It is necessary to then iterate through each item in the list or specify an

index number to reference a specific page element object. To return a list of

only LegendElements, use the LEGEND_ELEMENT constant for

the element_type parameter. A wildcard can also be used to further refine the

search based on the element name.

Legend elements in a layout have a property in the ArcMap user interface

called Add a new item to the legend when a new layer is added to the map which

allows the legend to automatically update when layers are added or removed from

a map. The autoAdd property toggles this behavior on/off so you can control

whether or not a newly added layer should appear in the legend. For example, you

may want to add orthophotography, but you don't want it to appear in the legend.

Prior to using the AddLayer function, you would want to set the autoAdd property

to False.

Legend elements in the ArcMap user interface also have a property called Fixed

Frame. When this property is toggled on and too many legend items get added,

there may not be enough room for all items to fit within the fixed area specified.

When this happens, the legend elements that don't fit are replaced by a small icon

that indicates the legend is overflowing. The isOverflowing property allows you

to check for this, then resize the legend element or modify the legend items

appropriately by providing a legend item style item that uses smaller fonts, for

example.

The removeItem and updateItem properties serve a basic arcpy.mapping

requirement: to provide the ability to remove legend items or modify their style

items with custom settings. In the user interface, when you add a new layer to the

table of contents and that feature gets automatically added to the legend, a default

style is applied. The arcpy.mapping module allows you to update the individual

legend item style items in a LegendElement on a page layout. This can be

accomplished using the following workflow.

 Author a custom legend item style item using the Style Manager.

 Reference the custom legend item style item using the ListStyleItems function.

 Reference the legend element using the ListLayoutElements function.

 Update a specific legend item style item in the legend using

the updateItem method on the LegendElement class.

It is recommended that each page layout element be given a unique name so that

it can be easily isolated using ArcPy scripting. This is set via the Size and Position

Tab on the Properties dialog box in ArcMap.

X and Y element positions are based on the element's anchor position, which is

also set via the Size and Position Tab on the Properties dialog box in ArcMap.

Page units can only be changed in ArcMap via Customize > ArcMap

Options > Layout View Tab.

Properties

Property Explanation
Data

Type

autoAdd

(Read and Write)

Controls whether a layer should be automatically added to

the legend when using

the AddLayer or AddLayerToGroup functions. This property

mimics the Map Connection check box option labeled Add a

new item to legend when a new layer is added to the map,

found via the Legend Properties dialog box's Item tab.

Boolean

elementHeight

(Read and Write)

The height of the element in page units. The units assigned or

reported are in page units.

Double

elementPositionX

(Read and Write)

The x location of the data frame element's anchor position.

The units assigned or reported are in page units.

Double

elementPositionY

(Read and Write)

The y location of the data frame element's anchor position.

The units assigned or reported are in page units.

Double

elementWidth

(Read and Write)

The width of the element in page units. The units assigned or

reported are in page units.

Double

isOverflowing

(Read Only)

Returns True if the legend items can't fit when the Fixed

Frame option is set within legend properties.

Boolean

items

(Read Only)

Returns a list of strings that represents the individual legend

item names.

String

name

(Read and Write)

The name of the element.
String

parentDataFrameName

(Read Only)

A string that represents the name of the data frame for the

associated element.
String

title

(Read and Write)

The text string that represents the legend's title.
String

type

(Read Only)

Returns the element type for any given page layout element.

 DATAFRAME_ELEMENT —Data frame element

 GRAPHIC_ELEMENT —Graphic element

 LEGEND_ELEMENT —Legend element

 MAPSURROUND_ELEMENT —Map surround element

 PICTURE_ELEMENT —Picture element

 TEXT_ELEMENT —Text element

String

Method Overview

Method Explanation

adjustColumnCount (column_count)
Provides a mechanism to set the number of

columns in a legend.

listLegendItemLayers () Returns a list of Layer object references for

every legend item in a legend.

removeItem (legend_item_layer, {index}) The removeItem method allows you to

remove a legend item from a legend on a

layout.

updateItem (legend_item_layer,

{legend_item_style_item},

{preserve_item_sizes}, {use_visible_extent},

{show_feature_count}, {use_ddp_extent},

{index})

The updateItem method allows you to

update a number of individual properties for

a legend item within a legend on a layout.

Methods

adjustColumnCount (column_count)

Parameter Explanation Data Type

column_count
An integer that represents the desired number of columns.

(The default value is 1)

Integer

There are plenty of cases where there is not enough space on a layout to fit all

legend items in a single column. A legend can be interrogated using

its elementHeight or elementWidth properties to determine the needed space

on the page. Another method would be to count the number of items in a legend.

Whichever method is used, adjustColumnCount can then be used to establish

the number of desired columns in a legend.

listLegendItemLayers ()

Return Value

Data Type Explanation

Layer A Python list of Layer objects. Each legend item references a layer.

The listLegendItemLayers method is useful for determining the different

layers and the number of times they are being used in a legend. A Layer object is

returned for each legend item found in a legend. It is possible that a layer can

appear in the table of contents only once but exist in the legend multiple times. By

evaluating the returned list of Layer objects (one for each legend item), you can

determine if the layer exists multiple times. If you want to remove or modify each

of those instances, you will need to provide an index parameter value for both

the removeItem and updateItem methods.

removeItem (legend_item_layer, {index})

Parameter Explanation
Data

Type

legend_item_layer
A reference to a layer that is used in a legend.

Layer

index A single layer can be added into the same legend multiple times.

The index value provides a way to reference a specific legend item.

If you have more than one item and you want to remove all

instances, then the removeItem will need to be called multiple

times. By default the first legend item for a layer is removed.

(The default value is 0)

Long

There may be times when you want to remove an item from the legend. For

example, a legend item for orthophotography doesn't really make sense to have in

a legend. The removeItem method allows you to remove an individual legend

item from the legend on a layout after it has been automatically added. Another

option is to use set the autoAdd property on a legend to control whether or not a

newly added layer will get automatically added to the legend.

updateItem (legend_item_layer, {legend_item_style_item},

{preserve_item_sizes}, {use_visible_extent}, {show_feature_count},

{use_ddp_extent}, {index})

Parameter Explanation
Data

Type

legend_item_layer
A reference to a layer that is used in a legend.

Layer

legend_item_style_item A reference to a legend item style item that is returned

from the ListStyleItems function. This item must come

from the style folder name Legend Items.

(The default value is None)

Object

preserve_item_sizes A Boolean that controls whether or not the symbol sizes

can change if the size of the legend is changed. If set

to True, the sizes authored in the style item will remain

unchanged.

(The default value is False)

Boolean

use_visible_extent
A Boolean that controls if only the features in the data

frame's visible extent will be displayed in the legend.

(The default value is False)

Boolean

show_feature_count
A Boolean that controls if feature counts will be displayed

in the legend.

(The default value is False)

Boolean

use_ddp_extent
A Boolean that controls if only the features within the Data

Driven Pages index layer feature will be displayed in the

legend. Data Driven Pages must be enabled.

(The default value is False)

Boolean

index A single layer can be added into the same legend multiple

times. The index value provides a way to reference a

specific legend item. If you have more than one item and

you want to remove all instances, then

the updateItem method will need to be called multiple

times. By default the first legend item for a layer is

updated.

(The default value is 0)

Long

The updateItem method serves a basic arcpy.mapping requirement to provide

the ability to update legend items with custom settings. In the user interface, when

you add a new layer to the table to contents, and that feature is automatically

added to the legend, a default style is applied. The arcpy.mapping module allows

you to update the individual legend items in a LegendElement on a page layout.

Code Sample

LegendElement example 1

The following script will add layers to a new data frame within a map document

that includes an inserted legend element named Legend. The layers will

automatically get added to the legend except for the orthophoto. This is controlled

using the autoAdd property. Finally, after the layers are added, the number of

columns are adjusted to two.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "New Data Frame")[0]

lyr1 = arcpy.mapping.Layer(r"C:\Project\Data\Parcels.lyr")

lyr2 = arcpy.mapping.Layer(r"C:\Project\Data\MapIndex.lyr")

lyr3 = arcpy.mapping.Layer(r"C:\Project\Data\Orthophoto.lyr")

legend = arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT",

"Legend")[0]

legend.autoAdd = True

arcpy.mapping.AddLayer(df, lyr1, "BOTTOM")

arcpy.mapping.AddLayer(df, lyr2, "BOTTOM")

legend.autoAdd = False

arcpy.mapping.AddLayer(df, lyr3, "BOTTOM")

legend.adjustColumnCount(2)

mxd.save()

del mxd

LegendElement example 2

The following script works with a legend element with Fixed Frame toggled on. If

the legend items are overflowing, the script will increase the height of the legend

by 0.1 inch until all items fully display.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

legendElm = arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT",

"Legend")[0]

while legendElm.isOverflowing:

 legendElm.elementHeight = legendElm.elementHeight + 0.1

del mxd

LegendElement example 3

The following script uses the workflow outlined above and updates a given legend

item. A layer is added to the first data frame in the map document and the legend

item will be updated with a custom legend item style item

calledNewDefaultLegendStyle. The custom .style file is saved in the user's

profile location. Next, the script checks to see if the legend is overflowing, and if it

does, it removes an unnecessary layer from the legend to make additional room.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd)[0]

lyrFile = arcpy.mapping.Layer(r"C:\Project\Data\Rivers.lyr")

arcpy.mapping.AddLayer(df, lyrFile, "TOP")

lyr = arcpy.mapping.ListLayers(mxd, 'Rivers', df)[0]

styleItem = arcpy.mapping.ListStyleItems("USER_STYLE", "Legend Items",

"NewDefaultLegendStyle")[0]

legend = arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT")[0]

legend.updateItem(lyr, styleItem)

if legend.isOverFlowing:

 removeLyr = arcpy.mapping.ListLayers(mxd, "County Boundary")[0]

 legend.removeItem(removeLyr)

del mxd

LegendElement example 4

The following script updates all layers in the legend to use a custom legend item

style item called MyNewStyle.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

legend = arcpy.mapping.ListLayoutElements(mxd,"LEGEND_ELEMENT")[0]

styleItem = arcpy.mapping.ListStyleItems("USER_STYLE",

 "Legend Items",

 "MyNewStyle")[0]

for lyr in legend.listLegendItemLayers():

 legend.updateItem(lyr, styleItem)

del mxd

MapDocument (arcpy.mapping)
Top

Summary

Provides access to map document (.mxd) properties and methods. A reference to

this object is essential for most map scripting operations.

Discussion

The MapDocument object is usually one of the first object references created in a

map automation script because it is a required parameter for many of

the arcpy.mapping functions. It is through the MapDocument object that you

ultimately can get access to almost all other objects within a map document (for

example, data frames, layers, page layout elements). The MapDocument object

provides access to most of the map document properties found in the Map

Document Properties dialog box in ArcMap (File > Map Document Properties). The

object also contains methods for managing map document thumbnails and

methods for saving map documents that are found within the ArcMap File menu.

There are two different ways that a MapDocument object can be created using

the MapDocument function. The first, and most recommended, method is to

provide a system path to the location of the map document (.mxd) on disk. This

technique is most versatile because then a script can be run outside an ArcGIS

application. Referencing a specific map document on disk provides more control in

terms of how the script will execute because a given script may not work on all

map documents.

The second technique is to use the CURRENT keyword as an input parameter to

the MapDocument function. This technique only works from within an ArcMap

application because the MapDocument object references the map document that

is currently loaded into the ArcMap application. Using CURRENT is very helpful

when quickly testing and learning the scripting capabilities and command syntax

within the Python window. You may start off learning the syntax in the Python

window, then start pasting those lines of code into a more permanent script saved

to disk.

Script tools that use the CURRENT keyword must be run from within ArcMap (either

from a custom menu or the Catalog window). Script tools using CURRENT will not

execute properly if run from within the ArcCatalog application. For this same

reason, if a script tool has a validation script that includes a reference to CURRENT,

an error may occur if you try to edit the validation script from ArcCatalog. Be sure

to edit the script tool's validation code from within the ArcMap Catalog window.

To use the CURRENT keyword within a script tool, background processing must be

disabled. Background processing runs all scripts as though they were being run as

stand-alone scripts outside an ArcGIS application, and for this

reason, CURRENT will not work with background processing enabled. There is a

new script tool option called Always run in foreground that ensures that a script

tool will run in the foreground even if background processing is enabled.

It is very important to understand how variables reference MapDocument objects

in the scripting environment, especially when you are saving your results to a new

file. You must understand that when you initially create a variable that references

a MapDocument object, it will always point to the original map document on disk

or currently in memory (via CURRENT). In the ArcMap application, if you perform

a SaveAs to a new file location, all subsequent changes are directed to the new

file. This is not possible within the scripting environment, and therefore,

a saveAs method is not provided. The MapDocument class

has save and saveACopy methods for managing modifications to a map

document.

If scripting is used to modify the appearance of some map document elements

while using the CURRENT map document (for example, change a layer name, the

data frame extent, and so on), the map may not automatically update with each

executed line of code. To refresh the map document to reflect the changes, use

either the RefreshActiveView or RefreshTOC functions. These functions will

refresh the map display or page layout and table of contents, respectively. The

refresh functions are only needed if you want to see the application updated.

Arcpy.mapping export, save, and printing functions will generate the expected

updated results without using these functions.

Some layers within a map document or layer file may be password protected

because the user and password information is not saved within the layer file or

map document. Map documents that contain these layers will prompt the user to

enter the appropriate information while the document is opening. The

arcpy.mapping scripting environment will by default suppress these dialog boxes

during execution, but that means that the layers will be treated as though they

have broken data sources. In other words, secured layers will not be rendered in

any output. If it is necessary for these layers to render appropriately, then there

are a couple of options. First, save the user name and password information with

the layers. Second, the CreateArcSDEConnectionFile geoprocessing function

allows you to create a connection that persists in memory. If this command is used

prior to opening a map document (.mxd) with the MapDocument function or a

layer file with the Layer function, then SDE layers will render. Currently, there is

not an alternative for secured Web services.

The variable that references the MapDocument object will place a lock on the map

document file. It is good practice to remove the Map Document object reference

using the Python del command at the end of a script or within a try/except

statement.

Changing data sources in a map document is a common requirement. There are

two methods on the MapDocument object that help with this.

The findAndReplaceWorkspacePaths method is intended for replacing part or

all of a layer's or table's workspace path. The replaceWorkspaces method

http://resources.arcgis.com/en/help/main/10.2/018v/018v0000006s000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v0000001m000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/0017000000pt000000.htm

allows you to change not only a path but also the workspace type. For more

detailed discussion, parameter information, scenarios, and code samples, please

refer to the Updating and fixing data sources with arcpy.mapping help topic.

Syntax

MapDocument (mxd_path)

Parameter Explanation
Data

Type

mxd_path A string that includes the full path and file name of an existing map

document (.mxd) or a string that contains the keyword CURRENT.

String

Properties

Property Explanation Data Type

activeDataFram

e

(Read Only)

Returns a DataFrame object that represents the currently

active data frame in a map document (.mxd).

The activeDataFrameproperty will return the

appropriate data frame even if the map document is in page

layout view. If you want to set the active data frame, use

the activeView property.

DataFrame

activeView

(Read and Write)

Provides the ability to set or get a map document's active

view to either a single data frame or the page layout. The

property works with a string that represents the active data

frame name or the PAGE_LAYOUT keyword.

If activeView is set to PAGE_LAYOUT and the map

document is saved, the next time the map document is

opened, it will be opened in layout mode. If activeView is

set to a data frame name and the map document is saved, the

next time the map document is opened, it will be opened in

data view, and that particular data frame will be the active

data frame.

String

author

(Read and Write)

Provides the ability to either get or set the map document's

author information.

String

credits

(Read and Write)

Provides the ability to either get or set the map document's

credits or copyright information.

String

dataDrivenPage

s

(Read Only)

Returns a DataDrivenPages object that can then be used to

manage the pages in a Data Driven Pages enabled map

document.

DataDrivenPa

ges

dateExported

(Read Only)

Returns a Python datetime object that reports the date the

last time the map document was exported. This value is only

current if the map document was saved after the map was

exported.

DateTime

datePrinted

(Read Only)

Returns a Python datetime object that reports the date the

last time the map document was printed. This value is only

current if the map document was saved after the map was

printed.

DateTime

dateSaved

(Read Only)

Returns a Python datetime object that reports the date the

last time the map document was saved.

DateTime

description

(Read and Write)

Provides the ability to either get or set the map document's

description information.

String

filePath

(Read Only)

Returns a string value that reports the fully qualified map

document path and file name.

String

hyperlinkBase

(Read and Write)

Provides the ability to either get or set the base path or URL

used for field-based hyperlinks to documents or URLs.

String

isDDPEnabled

(Read Only)

Returns True if the map document is Data Driven Pages

enabled.

Boolean

pageSize

(Read Only)

Provides the ability to get the layout's page size. It returns a

named tuple with the properties width and height.

The following script shows a few different techniques to print

a map document's page width and height.

mxd =

arcpy.mapping.MapDocument(r"C:\Project\Proj

ect.mxd")

print mxd.pageSize

print mxd.pageSize.width; print

mxd.pageSize.height

pageWidth, pageHeight = mxd.pageSize

print pageWidth, pageHeight

tuple

relativePaths

(Read and Write)

Provides the ability to control if a map document stores

relative paths to the data sources. A value of True sets

relative paths; a value of False sets full paths to the data

sources.

Boolean

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

summary

(Read and Write)

Provides the ability to either get or set the map document's

summary information.

String

tags

(Read and Write)

Provides the ability to either get or set the map document's

tag information. Separate tags with a single comma (,).

String

title

(Read and Write)

Provides the ability to either get or set the map document's

title information.

String

Method Overview

Method Explanation

deleteThumbnail () Deletes a map document's (.mxd) thumbnail

image

findAndReplaceWorkspacePaths

(find_workspace_path,

replace_workspace_path, {validate})

Finds old workspace paths and replaces them

with new paths for all layers and tables in a map

document (.mxd)

makeThumbnail () Creates a map document's (.mxd) thumbnail

image

replaceWorkspaces (old_workspace_path,

old_workspace_type, new_workspace_path,

new_workspace_type, {validate})

Replaces an old workspace with a new

workspace for all layers and tables in a map

document (.mxd); also provides the ability to

switch workspace types (for example, replace a

file geodatabase data source with an SDE data

source).

save () Saves a map document (.mxd)

saveACopy (file_name, {version}) Provides an option to save a map document

(.mxd) to a new file, and optionally, to a

previous version.

Methods

deleteThumbnail ()

This performs the same operation as clicking the Delete Thumbnail button on

the File > Map Document Properties dialog box in ArcMap.

findAndReplaceWorkspacePaths (find_workspace_path,

replace_workspace_path, {validate})

Parameter Explanation
Data

Type

find_workspace_path A string that represents the workspace path or connection

file you want to find. If an empty string is passed, then all

workspace paths will be replaced with

the replace_workspace_path, depending on the

value of the validate parameter.

String

replace_workspace_path
A string that represents the workspace path or connection

file you want to use to replace.

String

validate If set to True, a workspace will only be updated if

the replace_workspace_path value is a valid

workspace. If it is not valid, the workspace will not be

replaced. If set to False, the method will set all

workspaces to match the replace_workspace_path,

regardless of a valid match. In this case, if a match does not

exist, then the layer and table's data sources would be

broken.

(The default value is True)

Boolean

For more detailed discussion, parameter information, scenarios, and code

samples, please refer to the Updating and Fixing Data Sources with

arcpy.mapping help topic.

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

makeThumbnail ()

This performs the same operation as clicking the Make Thumbnail button in

the File > Map Document Properties dialog box in ArcMap.

replaceWorkspaces (old_workspace_path, old_workspace_type,

new_workspace_path, new_workspace_type, {validate})

Parameter Explanation
Data

Type

old_workspace_path A string that represents the workspace path or connection file

you want to find. If an empty string is passed, then all

workspace paths will be replaced with

the new_workspace_path, depending on the value of

the validate parameter.

String

old_workspace_type
A string keyword that represents the workspace type of the old

data to be replaced. If an empty string is passed, multiple

workspaces can be redirected into one workspace.

 ACCESS_WORKSPACE — A personal geodatabase or
Access workspace

 ARCINFO_WORKSPACE — An ArcInfo coverage workspace

 CAD_WORKSPACE —A CAD file workspace

 EXCEL_WORKSPACE —An Excel file workspace

 FILEGDB_WORKSPACE —A file geodatabase workspace

 NONE —Used to skip the parameter

 OLEDB_WORKSPACE —An OLE database workspace

 PCCOVERAGE_WORKSPACE —A PC ARC/INFO Coverage
workspace

 RASTER_WORKSPACE —A raster workspace

 SDE_WORKSPACE —An SDE geodatabase workspace

 SHAPEFILE_WORKSPACE —A shapefile workspace

 TEXT_WORKSPACE —A text file workspace

 TIN_WORKSPACE —A TIN workspace

 VPF_WORKSPACE —A VPF workspace

String

new_workspace_path
A string that represents the new workspace path or connection

file.

String

new_workspace_type A string keyword that represents the workspace type that will

replace the old_workspace_type.

 ACCESS_WORKSPACE — A personal geodatabase or
Access workspace

 ARCINFO_WORKSPACE — An ArcInfo coverage workspace

 CAD_WORKSPACE —A CAD file workspace

 EXCEL_WORKSPACE —An Excel file workspace

 FILEGDB_WORKSPACE —A file geodatabase workspace

 OLEDB_WORKSPACE —An OLE database workspace

String

 PCCOVERAGE_WORKSPACE —A PC ARC/INFO Coverage
workspace

 RASTER_WORKSPACE —A raster workspace

 SDE_WORKSPACE —An SDE geodatabase workspace

 SHAPEFILE_WORKSPACE —A shapefile workspace

 TEXT_WORKSPACE —A text file workspace

 TIN_WORKSPACE —A TIN workspace

 VPF_WORKSPACE —A VPF workspace

validate If set to True, a workspace will only be updated if

the new_workspace_path value is a valid workspace. If it

is not valid, the workspace will not be replaced. If set

to False, the method will set all workspaces to match

the new_workspace_path, regardless of a valid match. In

this case, if a match does not exist, then the data sources would

be broken.

(The default value is True)

Boolean

For more detailed discussion, parameter information, scenarios, and code

samples, please refer to the Updating and Fixing Data Sources with

arcpy.mapping help topic.

save ()

This performs the same operation as File > Save in ArcMap.

saveACopy (file_name, {version})

Parameter Explanation
Data

Type

file_name A string that includes the location and name of the output map document

(.mxd).

String

version
A string that sets the output version number. The default value will use

the current version.

 10.1 —Version 10.1/10.2

 10.0 —Version 10.0

 8.3 —Version 8.3

 9.0 —Version 9.0/9.1

 9.2 —Version 9.2

 9.3 —Version 9.3

(The default value is None)

String

This performs the same operation as File > SaveACopy in ArcMap. Features that

are not supported in prior versions of the software will be removed from the newly

saved map document.

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

Code Sample

MapDocument example 1

The following script creates a separate MXD file for each data frame in a map

document. The output map documents will be saved in data view mode so when

each map document is opened, the corresponding data frame will be active data

frame. The script also sets the title property of each output map document.

Because this script uses a system path to the map document, it can be executed

outside an ArcMap application. Note: Python strings cannot end with a backslash,

even when the string is preceded by an r. You must use a double backslash. This

becomes important when appending dynamic file names to a folder path.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for df in arcpy.mapping.ListDataFrames(mxd):

 mxd.activeView = df.name

 mxd.title = df.name

 mxd.saveACopy(r"C:\Project\Output\\" + df.name + ".mxd")

del mxd

MapDocument example 2

The following script demonstrates how the CURRENT keyword can be used within

the Python window. This sample will update the first data frame's name and

refresh the table of contents so the change can be see in the application. Paste

the following code into the Python window within a new ArcMap document.

mxd = arcpy.mapping.MapDocument("CURRENT")

arcpy.mapping.ListDataFrames(mxd)[0].name = "New Data Frame Name"

arcpy.RefreshTOC()

del mxd

When pasted into the interactive window it will appear as follows. The three dots to

the left of the code block indicate that the lines are a single block of code that will be

executed together. You must press the Enter key to execute these lines.

>>> mxd = arcpy.mapping.MapDocument("CURRENT")

... arcpy.mapping.ListDataFrames(mxd)[0].name = "New Data Frame Name"

... arcpy.RefreshTOC()

... del mxd

...

MapDocument example 3

The following is another simple script that demonstrates the use of

the CURRENT keyword within the Python window. Each layer name will be printed

to the Python window. Loops are also possible, provided that you maintain the

correct indentation. Similar to the example above, paste the code below into the

Python window.

mxd = arcpy.mapping.MapDocument("CURRENT")

for lyr in arcpy.mapping.ListLayers(mxd):

 print lyr.name

del mxd

When pasted into the interactive window it will appear as follows. Again, press the

Enter key to execute the lines.

>>> mxd = arcpy.mapping.MapDocument("CURRENT")

... for lyr in arcpy.mapping.ListLayers(mxd):

... print lyr.name

... del mxd

...

MapDocument example 4

The following script will allow secured layers to render correctly by creating an

SDE connection in memory before opening a map document that requires

password information. This script simply defines the connection information and

exports the map document to a PDF file. It is good practice to delete this reference

from memory before the script closes.

import arcpy, os

#Remove temporary connection file if it already exists

sdeFile = r"C:\Project\Output\TempSDEConnectionFile.sde"

if os.path.exists(sdeFile):

 os.remove(sdeFile)

#Create temporary connection file in memory

arcpy.CreateArcSDEConnectionFile_management(r"C:\Project\Output",

"TempConnection", "myServerName", "5151", "myDatabase",

"DATABASE_AUTH", "myUserName", "myPassword", "SAVE_USERNAME",

"myUser.DEFAULT", "SAVE_VERSION")

#Export a map document to verify that secured layers are present

mxd = arcpy.mapping.MapDocument(r"C:\Project\SDEdata.mxd")

arcpy.mapping.ExportToPDF(mxd, r"C:\Project\output\SDEdata.pdf")

os.remove(sdeFile)

del mxd

MapsurroundElement (arcpy.mapping)
Top

Summary

Provides access to properties that enables its repositioning on the page layout as

well as identifying its parent data frame.

Discussion

A MapsurroundElement object is a page element that has an association with a

data frame. For example, there is a one-to-one relationship between a north arrow

and a data frame. Mapsurround elements also include scale text and scale bars

items. There is a property called parentDataFrameName that allows you to find

the elements that are associated with a particular data frame. A legend element is

also an example of a mapsurround, but because it has additional properties, it is a

separate element type. The ListLayoutElements function returns a Python list of

page layout element objects. It is necessary to then iterate through each item in

the list or specify an index number to reference a specific page element object. To

return a list of only MapsurroundElements, use the

MAPSURROUND_ELEMENT constant for the element_type parameter. A

wildcard can also be used to further refine the search based on the element name.

It is recommended that each page layout element be given a unique name so that

it can be easily isolated using arcpy scripting. X and Y element positions are

based on the element's anchor position, which is set via the Size and Position tab

on the Elements Properties dialog box in ArcMap.

Properties

Property Explanation
Data

Type

elementHeight

(Read and Write)

The height of the element in page units. The units assigned

or reported are in page units.

Double

elementPositionX

(Read and Write)

The x location of the data frame element's anchor position.

The units assigned or reported are in page units.

Double

elementPositionY

(Read and Write)

The y location of the data frame element's anchor position.

The units assigned or reported are in page units.

Double

elementWidth
The width of the element in page units. The units assigned

or reported are in page units.

Double

(Read and Write)

name

(Read and Write)

The name of the element.
String

parentDataFrameName

(Read Only)

A string that represents the name of the DataFrame for the

associated element.
String

type

(Read Only)

Returns the element type for any given page layout

element.

 DATAFRAME_ELEMENT —Dataframe element

 GRAPHIC_ELEMENT —Graphic element

 LEGEND_ELEMENT —Legend element

 MAPSURROUND_ELEMENT —Mapsurround element

 PICTURE_ELEMENT —Picture element

 TEXT_ELEMENT —Text element

String

Code Sample

MapsurroundElement example

The following script will find the mapsurround element named ScaleBar and

change it's position.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

scaleBar = arcpy.mapping.ListLayoutElements(mxd,

"MAPSURROUND_ELEMENT", "ScaleBar")[0]

df = arcpy.mapping.ListDataFrames(mxd,

scaleBar.parentDataFrameName)[0]

scaleBar.elementPositionX = df.elementPositionX + (df.elementWidth /

2)

mxd.save()

del mxd

http://resources.arcgis.com/en/help/main/10.2/00s3/00s300000041000000.htm

PDFDocument (arcpy.mapping)
Top

Summary

Allows manipulation of PDF documents, including facilities for merging pages,

deleting pages, setting document open behavior, adding file attachments, and

creating or changing document security settings.

Discussion

PDFDocumentOpen and PDFDocumentCreate are two functions that provide a

reference to a PDFDocument object.

When using the appendPages, insertPages, or attachFile methods, it is

important to pass a string that represents the path to an existing PDF file. If

a PDFDocument object is passed, the method will fail. It is also required that PDF

security be the same for all documents that are being appended, inserted, or

attached. For example, if you want to append three documents into one multipage

PDF and only the first document is protected with a password, the other two

documents must also first be given the same password before appendPages is

used.

The deletePages method is useful for swapping out only the pages that have

been modified. It may take a long time to process dozens of pages. If only a

relative few have been modified, it is faster to delete only those pages, then insert

the newly updated pages using the insertPages method.

For more discussion on how to create map books, see the Building Map Books

with ArcGIS help topic.

Syntax

PDFDocument (pdf_path)

Parameter Explanation
Data

Type

pdf_path A string that specifies the path and file name for the resulting PDF file

when the saveAndClose method is called.
String

The PDFDocumentCreate function receives a path to determine the save

location and file name where a new PDF file will be created. However, no PDF file

will be created until subsequent steps are performed to insert or append pages

and save the PDF file. PDFDocumentCreate will return a PDFDocument object

that your script should then manipulate and save. A common scenario for using

this function is the creation of a PDF map book. The steps typically involve

exporting a number of separate PDF files from map documents, creating a new

PDFDocument object, appending content from the exported PDF files and other

documents, and saving the final PDF map book.

Please note that it is not possible to create blank PDF files, nor does

the PDFDocumentCreate function add any blank pages to the document

contents. For the saveAndClose method to successfully create a file, content

must be added to the PDFDocument object using

the appendPages or insertPages methods.

For more discussion on how to create map books, see the Building Map Books

with ArcGIS help topic.

PDFDocumentCreate example

This script will create a new PDF document, append the contents of three

separate PDF documents, and save the resulting PDF file.

import arcpy, os

#Set file name and remove if it already exists

pdfPath = r"C:\Project\ParcelAtlasMapBook.pdf"

if os.path.exists(pdfPath):

 os.remove(pdfPath)

#Create the file and append pages

pdfDoc = arcpy.mapping.PDFDocumentCreate(pdfPath)

pdfDoc.appendPages(r"C:\Project\Title.pdf")

pdfDoc.appendPages(r"C:\Project\ParcelAtlas.pdf")

pdfDoc.appendPages(r"C:\Project\ContactInfo.pdf")

#Commit changes and delete variable reference

pdfDoc.saveAndClose()

del pdfDoc

http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000002s000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000002s000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000002s000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000002s000000.htm

Properties

Property Explanation
Data

Type

pageCount

(Read Only)

Returns an integer that represents the total number of pages in the PDF

document

Long

Method Overview

Method Explanation

appendPages (pdf_path,

{input_pdf_password})
Appends one PDF document to the end of another

attachFile (file_path, {description})
Attaches files to existing PDF documents (Attachments

are then accessible to users when the PDF file is opened

in a PDF viewer application.)

deletePages (page_range)
Provides the ability to delete one or multiple pages within

an existing PDF document.

insertPages (pdf_path,

{before_page_number},

{input_pdf_password})

Allows inserting the contents of one PDF document at the

beginning or in between the pages of another

PDFDocument

saveAndClose () Saves any changes made to the currently

referenced PDFDocument

updateDocProperties ({pdf_title},

{pdf_author}, {pdf_subject},

{pdf_keywords}, {pdf_open_view},

{pdf_layout})

Allows updating of the PDF document metadata and can

also set the certain behaviors that will trigger when the

document is opened in Adobe Reader or Adobe Acrobat,

such as the initial view mode and the page thumbnails

view

updateDocSecurity

(new_master_password,

{new_user_password}, {encryption},

{permissions})

Provides the mechanism that sets password, encryption,

and security restrictions on PDF files.

Methods

appendPages (pdf_path, {input_pdf_password})

Parameter Explanation
Data

Type

pdf_path
A string that includes the location and name of the input PDF

document to be appended

String

input_pdf_password
A string that defines the master password to a protected file

(The default value is None)

String

When appending secured PDF documents that each have different security

settings, the output settings will be based on the primary document that pages are

being appended to. For example, if the document that is being appended to does

not have password information saved, but the appended pages do, the resulting

document will not have password information saved.

attachFile (file_path, {description})

Parameter Explanation
Data

Type

file_path
A string that includes the location and name of the file to be attached to

the PDF document.

String

description
An optional string to be used as a description for the attachment. The user

will see this string when viewing the attachment in a PDF viewer

application.

String

Use the attachFile method to attach any type of file to a PDF document.

deletePages (page_range)

Parameter Explanation
Data

Type

page_range A string that defines the page or pages to be deleted. Delete a single page

by passing in a single value as a string (for example,"3"). Multiple pages

can be deleted using a comma between each value (for example, "3, 5,

7"). Ranges can also be applied (for example, "1, 3, 5-12").

String

It is important to keep track of the pages that are being deleted, because each

time pages are deleted, the internal PDF page numbers are automatically

adjusted. For example, page 3 becomes page 2 immediately after page 1 or page

2 are deleted. If page 1 and page 2 are deleted, page 3 becomes page 1. You

need to consider this if you are using deletePages and then immediately

using appendPages or insertPages.

insertPages (pdf_path, {before_page_number}, {input_pdf_password})

Parameter Explanation
Data

Type

pdf_path
A string that includes the location and name of the input PDF

document to be inserted.

String

before_page_number An integer that defines a page number in the currently

referenced PDFDocument before which the new page(s) will

be inserted. For example, if the before_page_value is 1,

the inserted page will be inserted before all pages.

(The default value is 1)

String

input_pdf_password
A string that defines the master password to a protected file.

(The default value is None)

String

To add pages to the end of the current PDFDocument, use appendPages instead.

When inserting secured PDF documents that have different security settings, the

output settings will be based on the primary document that pages are being

inserted into. For example, if the document that is being inserted into does not

have password information saved, but the inserted pages do, the resulting

document will not have password information saved.

saveAndClose ()

The saveAndClose method must be used for changes to be maintained. If a

script exits before saveAndClose is executed, changes will not be saved.

updateDocProperties ({pdf_title}, {pdf_author}, {pdf_subject}, {pdf_keywords},

{pdf_open_view}, {pdf_layout})

Parameter Explanation
Data

Type

pdf_title
A string defining the document title, a PDF metadata property.

(The default value is None)

String

pdf_author
A string defining the document author, a PDF metadata property.

(The default value is None)

String

pdf_subject
A string defining the document subject, a PDF metadata property.

(The default value is None)

String

pdf_keywords
A string defining the document keywords, a PDF metadata property.

(The default value is None)

String

pdf_open_view
A string or number that will define the behavior to trigger when the

PDF file is viewed. The default value is USETHUMBS, which will

show the Adobe Reader Pages panel automatically when the PDF is

opened.

 VIEWER_DEFAULT —Uses the application user preference when
opening the file

 USE_NONE —Displays the document only; does not show other
panels

 USE_THUMBS —Displays the document plus the Pages panel

 USE_BOOKMARKS —Displays the document plus the Bookmarks
panel

 FULL_SCREEN —Displays the document in full-screen viewing
mode

 LAYERS —Displays the document plus the layers panel

 ATTACHMENT —Displays the document plus the attachment
panel

(The default value is USE_THUMBS)

String

pdf_layout
A string or number that will define the initial view mode to trigger

when the PDF file is viewed.

 DONT_CARE —Uses the application user preference when
opening the file

String

http://resources.arcgis.com/en/help/main/10.2/00s3/00s300000033000000.htm

 SINGLE_PAGE —Uses single-page mode

 ONE_COLUMN —Uses one-column continuous mode

 TWO_COLUMN_LEFT —Uses two-column continuous mode with
first page on left

 TWO_COLUMN_RIGHT —Uses two-column continuous mode with
first page on right

 TWO_PAGE_LEFT —Uses two-page mode left

 TWO_PAGE_RIGHT —Uses two-page mode right

(The default value is SINGLE_PAGE)

A pdf_open setting of FULL_SCREEN will prompt a warning about full-screen

mode when the PDF is opened. Setting pdf_open to a different option will not

clear this setting unless pdf_open is set to USE_NONE.

updateDocSecurity (new_master_password, {new_user_password},

{encryption}, {permissions})

Parameter Explanation
Data

Type

new_master_password
A string that defines the master document password. This

password is required for appending and inserting pages into a

secured PDF.

String

new_user_password
A string that defines the user password needed to open the PDF

document for viewing.

(The default value is None)

String

encryption
A string that defines the encryption technique used on the PDF.

 "AES_V1" —Uses 128-bit AES encryption (Acrobat 7.0
compatible)

 "AES_V2" —Uses 256-bit AES encryption (Acrobat 9.0
compatible)

 "RC4" —Uses 128-bit RC4 encryption (Acrobat 5.0
compatible)

(The default value is RC4)

String

permissions A string that defines the capabilities restricted by the document

security settings. The permissions argument can accept a

list of strings describing all the options to be restricted. The

document restrictions can be viewed in Adobe Acrobat in the

Document Properties Document Restrictions Summary page.

 "ALL" —Grants all permissions

 "ALL_MASTER" —Grants permissions for COPY, EDIT,
EDIT_NOTES, and HIGH_PRINT

 "COPY" —Grants permission to copy information from the
document to the clipboard

String

 "DOC_ASSEMBLY" —Grants permission to perform page
insert, delete, and rotate, and allows creation of
bookmarks and thumbnails

 "EDIT" —Grants permission to edit the document in ways
other than adding or modifying text notes

 "EDIT_NOTES" —Grants permission to add, modify, and
delete text notes

 "FILL_AND_SIGN" —Grants permission to fill in or sign
existing form or signature fields

 "HIGH_PRINT" —Grants permission for high-quality
printing

 "OPEN" —Grants permission to open or decrypt the
document

 "PRINT" —Grants permission to print the document

 "SECURE" —Grants permission to change the document's
security settings

(The default value is ALL)

A password on a secured PDF document can be removed simply by setting

the new_master_password and new_user_password properties to empty

strings.

Code Sample

PDFDocument example 1

This script will create a new PDF document, append the contents of two separate

PDF documents, and save the resulting PDF file.

import arcpy, os

#Set file name and remove if it already exists

pdfPath = r"C:\Project\ParcelAtlasMapBook.pdf"

if os.path.exists(pdfPath):

 os.remove(pdfPath)

#Create the file and append pages

pdfDoc = arcpy.mapping.PDFDocumentCreate(pdfPath)

pdfDoc.appendPages(r"C:\Project\Title.pdf")

pdfDoc.appendPages(r"C:\Project\ParcelAtlas.pdf")

#Commit changes and delete variable reference

pdfDoc.saveAndClose()

del pdfDoc

PDFDocument example 2

The following script modifies the PDF document metadata properties for the

document created in example 1 above and sets the style in which the document

will open.

import arcpy

pdfDoc =

arcpy.mapping.PDFDocumentOpen(r"C:\Project\ParcelAtlasMapBook.pdf")

pdfDoc.updateDocProperties(pdf_title="Atlas Map",

 pdf_author="Author",

 pdf_subject="Map Book",

 pdf_keywords="Atlas; Map Books",

 pdf_open_view="USE_THUMBS",

 pdf_layout="SINGLE_PAGE")

pdfDoc.saveAndClose()

del pdfDoc

PDFDocument example 3

The following script will set the user password to esri, encrypt the PDF

using RC4 compression, and require a password when the document is opened.

import arcpy

pdfDoc =

arcpy.mapping.PDFDocumentOpen(r"C:\Project\ParcelAtlasMapBook.pdf")

pdfDoc.updateDocSecurity("master", "user", "RC4", "OPEN")

pdfDoc.saveAndClose()

del pdfDoc

PDFDocument example 4

The following pages will append a final page to the end of the already existing

multipage document. The master password is required to make this change to a

secured PDF document.

import arcpy

pdfDoc =

arcpy.mapping.PDFDocumentOpen(r"C:\Project\ParcelAtlasMapBook.pdf",

"master")

pdfDoc.appendPages(r"C:\Project\ContactInfo.pdf")

pdfDoc.saveAndClose()

del pdfDoc

PDFDocument example 5

The following script will replace a total of four pages in an existing PDF

using deletePages followed by insertPages. Note how we insert the new

page 3 before the current page 3 which was really page 4 before the original page

3 was removed. The same applies to the range of pages 5–7.

import arcpy

pdfDoc =

arcpy.mapping.PDFDocumentOpen(r"C:\Project\ParcelAtlasMapBook.pdf",

"master")

pdfDoc.deletePages("3, 5-7")

pdfDoc.insertPages(r"C:\Project\NewPage3.pdf", 3, "master")

pdfDoc.insertPages(r"C:\Project\NewPages5-7.pdf", 5, "master")

pdfDoc.saveAndClose()

del pdfDoc

PictureElement (arcpy.mapping)
Top

Summary

Provides access to picture properties that enable the repositioning of a picture on

the page layout as well as getting and setting its data source.

Discussion

The PictureElement object represents a raster or image that has been inserted

into the page layout. The ListLayoutElements function returns a Python list of page

layout element objects. It is necessary to then iterate through each item in the list

or specify an index number to reference a specific page element object. To return

a list of only PictureElements, use the PICTURE_ELEMENT constant for

the element_type parameter. A wild card can also be used to further refine the

search based on the element name.

It is recommended that each page layout element be given a unique name so that

it can be easily isolated in Python. X,Y element positions are based on the

element's anchor position, which is set using the Size and Position tab on

the Elements Properties dialog box in ArcMap.

The PictureElement object has a sourceImage property that allows you to

read or modify the picture source location. If you plan on replacing a picture with

pictures of different sizes and aspect ratios, author the map document with a

picture that has a height and width set that represents the complete area you want

all other pictures to occupy on the page layout. When a picture is replaced using

the sourceImage property and has a different aspect ratio, it will be fit to the area

of the original picture using the longest dimension. Replaced pictures will never be

larger than the original authored size. You will also want to set the anchor position

so that all new pictures are fit relative to that location. If you don't want pictures to

be skewed, make sure the Preserve Aspect Ratio option is checked.

Properties

Property Explanation
Data

Type

elementHeight

(Read and Write)

The height of the element in page units. The units assigned or

reported are in page units.

Double

elementPositionX

(Read and Write)

The x location of the data frame element's anchor position. The

units assigned or reported are in page units.

Double

elementPositionY

(Read and Write)

The y location of the data frame element's anchor position. The

units assigned or reported are in page units.

Double

elementWidth

(Read and Write)

The width of the element in page units. The units assigned or

reported are in page units.

Double

name

(Read and Write)

The name of the element.
String

sourceImage

(Read and Write)

A text string that represents the path to the image data source.
String

type

(Read Only)

Returns the element type for any given page layout element.

 DATAFRAME_ELEMENT —Data frame element

 GRAPHIC_ELEMENT —Graphic element

 LEGEND_ELEMENT —Legend element

 MAPSURROUND_ELEMENT —Map surround element

 PICTURE_ELEMENT —Picture element

 TEXT_ELEMENT —Text element

String

Code Sample

PictureElement example 1

The following script will find an image by name and set its data source to a new

location.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for elm in arcpy.mapping.ListLayoutElements(mxd, "PICTURE_ELEMENT"):

 if elm.name == "Photo":

 elm.sourceImage = r"C:\Project\Data\NewPhoto.bmp"

mxd.save()

del mxd

PictureElement example 2

The following script demonstrates how different pictures can be switched out for

each page in a Data Driven Pages enabled map document. There is a different

picture for each page. The pictures are named Photo1.png, Photo2.png,

Photo3.png, etc to match the corresponding page numbers.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

pict = arcpy.mapping.ListLayoutElements(mxd, "PICTURE_ELEMENT",

"photo")[0]

for pageNum in range(1, mxd.dataDrivenPages.pageCount + 1):

 mxd.dataDrivenPages.currentPageID = pageNum

 pict.sourceImage = r"C:\Project\Data\Photo{0}.png".format(pageNum)

 print("Exporting page {0} of {1}"

 .format(mxd.dataDrivenPages.currentPageID,

 mxd.dataDrivenPages.pageCount))

 arcpy.mapping.ExportToPDF(mxd,

r"C:\Project\Page{0}.pdf".format(pageNum))

del mxd

RasterClassifiedSymbology (arcpy.mapping)
Top

Summary

The RasterClassifiedSymbology class provides access to different

properties that allow you to change the appearance of a layer's raster classified

symbology.

Discussion

The RasterClassifiedSymbology class provides access to a limited number

of properties and methods that allow you to automate layer symbology in a map

document (.mxd) or layer file (.lyr). Basic operations, such as changing the

number of classes, modifying class break values and labels, or changing the field

that the symbology is based on, are some of the properties that can be modified.

For access to the complete set of layer symbology properties and settings, for

example, changing individual symbols for individual classes, it is necessary to

author these changes in the ArcMap user interface and then save those changes

to a layer file. These custom settings can then be applied to existing layers using

the UpdateLayer function.

A layer can use any number of symbologies but not all of them can be modified.

Not all layers will use the RasterClassifiedSymbology class, so it is

important to first test if the layer is using this symbology class before attempting to

make changes to its properties. The symbologyType property on the Layer class

was designed for this purpose. First test if the symbologyType for the layer is

raster classified (if lyr.symbologyType == "RASTER_CLASSIFIED":),

then create a variable reference to the RasterClassifiedSymbology class for

that layer (lyrSymbolClass = lyr.symbology).

The symbologyType on the Layer object is a read-only property. In other words,

you can't change a raster classified symbology to a raster unique value

symbology. You can only change the properties for a specific symbology class on

a layer. The only way to change the symbology type is by publishing the desired

result to a layer file and using the UpdateLayer function.

The classification method cannot be changed. In cases where you want to use

different classification methods, you would need to preauthor layer files and use

those to update a layer, then modify the properties that can be changed. The only

exception to this rule is when you set classBreakValues. Similar to the ArcMap

user interface, explicitly setting classBreakValues will automatically set the

classification method to manual. Also, similar to the ArcMap user interface, once

the classification method is set to manual, you can't change

the numClasses parameter.

Unlike the ArcMap user interface, you set a minimum value when setting

the classBreakValues parameter. The first value in

the classBreakValues list is the minimum value; all other values are the class

break values as they appear in the ArcMap use interface. For this reason,

the classBreakValues list will always have one more value than

the classBreakLabels and classBreakDescriptions lists.

Setting one parameter will often modify other parameters automatically. For

example, if you set numClasses, normalization, or

the valueField parameters, the classBreakValues, classBreakLabels,

andclassBreakDescriptions properties will automatically be adjusted based

on the current classification method. For this reason, the order in which properties

are modified is important.

The reclassify method updates a layer's symbology properties based on the

underlying source data. It is useful when a layer's symbology is updated using

the UpdateLayer function with symbology stored in another layer or layer file

(.lyr). For example, let's say you want to update the color properties of the

symbology of a layer in a map document with the symbology stored in a layer file.

However, the layer in the map document and the layer file have different data

sources. The minimum and maximum values and class breaks in the layer file may

be different than the layer in the map document. Updating the symbology of the

layer in the map document with the symbology stored in the layer file may produce

unintended results (for example, the class break values will match the layer file's

data source statistics as opposed to the map document layer's data source

statistics. However, if you follow UpdateLayer with the reclassify() method,

the end result is like using the color properties from the symbology in the layer file,

but other characteristics are based on the map document layer's underlying

source data.

If you are making these symbology modifications via the Python Window and you

are referencing a map document using CURRENT, you may not immediately see

the changes in the ArcMap application. To refresh the map document, try using

the RefreshActiveView and RefreshTOC functions.

http://resources.arcgis.com/en/help/main/10.2/018v/018v0000006s000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v0000001m000000.htm

Properties

Property Explanation
Data

Type

classBreakDescriptions

(Read and Write)

A sorted list of strings that represent the descriptions for each

class break value that can optionally appear in a map

document's legend. These values are only accessible in the

ArcMap user interface by right-clicking a symbol displayed

within the Symbologytab in the Layer Properties dialog box

and selecting Edit Description. The number of descriptions in

the sorted list must always be one less than the number

of classBreakValues. This is because

the classBreakValues list also includes a minimum value

which you don't see in the user interface. These values are

affected by changes to nearly all other class properties, so it is

best practice to set these values last.

List

classBreakLabels

(Read and Write)

A sorted list of strings that represent the labels for each class

break that appears in the map document's table of contents

and/or legend items. The number of labels in the sorted list

must always be one less than the number

of classBreakValues. This is because

the classBreakValues list also includes a minimum value

which you don't see in the user interface. These values are

affected by changes to nearly all other class properties, so it is

best practice to set these values last.

List

classBreakValues

(Read and Write)

A sorted list of doubles that includes the minimum and

maximum values that represent the class breaks. When

settingclassBreakValues, it will automatically set

the numClasses property and will also set the classification

method to manual as well as update other properties such

as classBreakLabels. Unlike the ArcMap user interface,

you have the ability to set a minimum value. The first value in

the sorted list represents the minimum value, and the

remaining values are the class breaks that appear in the user

interface; therefore, there will always be one more item in

the classBreakValues list than in

theclassBreakLabels and classBreakDescriptio

ns lists. Changing this value will automatically adjust other

symbology properties based on the new information.

List

excludedValues

(Read and Write)

A string that represents values or ranges to exclude from the

classification separated by semicolons. For example 1; 3;

5-7; and 8.5-12.1. The values are removed from the

classification, and therefore, will not be displayed.

String

normalization

(Read and Write)

A string that represents a valid dataset field name used for

normalization. Changing this value will automatically adjust

other symbology properties based on the new information. The

normalization field can be removed by setting the value

to None (for

example, lyr.symbology.normalization = None).

String

numClasses A long integer that represents the number of classes to be used

with the current classification method. Changing this value

will overwrite other symbol properties such

Long

(Read and Write) as classBreakValues and classBreakLabels. This

value cannot be set if the classification method is manual;

therefore, numClasses should not be called after

the classBreakValues property because it will

automatically set the classification method to manual.

Changing this value will automatically adjust other symbology

properties based on the new information.

valueField

(Read and Write)

A string that represents a valid dataset field name used for the

layer's classification symbology. Changing this value will

automatically adjust other symbology properties based on the

new information.

String

Method Overview

Method Explanation

reclassify ()
Resets the layer's symbology to the layer's data source information and statistics.

Methods

reclassify ()

The reclassify method updates a layer's symbology properties based on the

underlying source data. It is useful when a layer's symbology is updated using

the UpdateLayer function with symbology stored in another layer or layer file

(.lyr). This method will automatically update the symbology properties based on

the layer's actual data source information and statistics and not the information

that is persisted in a layer file. The method needs to be used cautiously because it

has the potential to overwrite other symbology properties.

The reclassify method will

regenerate classBreakValues, classBreakLabels,

and classBreakDescriptions. It will not

affectnumClasses or normalization. The reclassify method has no affect

on a manual classification.

Code Sample

RasterClassifiedSymbology example 1

The following script modifies the symbology for a layer in the current map

document. It first verifies that the layer has raster classified symbology. Finally, it

modifies a number of the properties on theRasterClassifiedSymbology class

and updates the display.

Since this sample uses the CURRENT keyword to access the map document, it

must be executed from within ArcMap. This is because the MapDocument object

references the map document that is currently loaded into the ArcMap application.

For more information regarding accessing map documents, see

the MapDocument class help topic.

import arcpy

mxd = arcpy.mapping.MapDocument("CURRENT")

df = arcpy.mapping.ListDataFrames(mxd, "Lakes")[0]

lyr = arcpy.mapping.ListLayers(mxd, "lakene.tif", df)[0]

if lyr.symbologyType == "RASTER_CLASSIFIED":

 lyr.symbology.classBreakValues = [1, 60, 118, 165, 255]

 lyr.symbology.classBreakLabels = ["1 to 60", "61 to 118",

 "119 to 165", "166 to 255"]

 lyr.symbology.classBreakDescriptions = ["Class A", "Class B",

 "Class C", "Class D"]

 lyr.symbology.excludedValues = '0'

arcpy.RefreshActiveView()

arcpy.RefreshTOC()

del mxd, df, lyr

RasterClassifiedSymbology example 2

The following script modifies the symbology for a layer in a map document on disk.

It first updates the layer's symbology using a layer file on disk with

the UpdateLayer function. The layer file contains a custom color ramp that is

applied to the layer. Next, it verifies that the layer has raster classified symbology.

The script then calls the reclassify method. This method will update the

symbology properties based on the layer's actual data source information and

statistics and not the information that is persisted in a layer file. Finally, the result

is exported to a PDF file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\StudyArea.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Lakes")[0]

lyr = arcpy.mapping.ListLayers(mxd, "lakene.tif", df)[0]

lyrFile = arcpy.mapping.Layer(r"C:\Project\Data\Lakes\lake_blue.lyr")

arcpy.mapping.UpdateLayer(df, lyr, lyrFile, True)

if lyr.symbologyType == "RASTER_CLASSIFIED":

 lyr.symbology.reclassify()

arcpy.mapping.ExportToPDF(mxd, r"C:\Project\Output\Lakes.pdf")

del mxd, df, lyr, lyrFile

StyleItem (arcpy.mapping)
Top

Summary

Provides access to StyleItem class properties.

Discussion

The symbols you choose to display features, elements, or graphics in your map

are stored in style files (.style). You use the Style Manager dialog box to create,

view, and modify styles and their contents. Styles are organized into a defined set

of categories or folder names, for example, Colors, Legend Items, Marker

Symbols, and Scale Bars. Individual style items are stored in each category or

folder name. For example, the Legend Itemsfolder name has several different

legend item style items, and each item has a different format, font size, and font

type for the different elements that are displayed for a legend item.

The StyleItem class was introduced to serve a basic arcpy.mapping

requirement to provide the ability to update legend item style items with custom

settings. In the user interface, when you add a new layer to the table to contents,

and that feature is automatically added to the legend, a default style is applied.

The arcpy.mapping module allows you to update the individual legend item style

items in a LegendElement on a page layout. This can be accomplished using the

following workflow.

 Author a custom legend item style item using the Style Manager.

 Reference the custom legend item style item using the ListStyleItems function.

 Reference the legend element using the ListLayoutElements function.

 Update a specific legend item style item in the legend using

the updateItem method on the LegendElement class.

Properties

Property Explanation
Data

Type

itemName

(Read Only)

A string that represents the name of the item the way it appears in

the Style Manager dialog box window.
String

itemCategory

(Read Only)

A string that represents the category of the item the way it appears in

the Style Manager dialog box window. Categories are used to group

symbols within a style.

String

styleFolderName

(Read Only)

A string that represents the name of the folder the StyleItem is

stored in, for example, Legend Items. Identifying

thestyleFolderName allows you to determine the type of the

style object you have referenced.

String

Code Sample

StyleItem example

The following script uses the workflow outlined above and updates a legend's

legend item style item. A layer is added to the first data frame in the map

document and the legend item style item will be updated with a custom legend

item style item called NewDefaultLegendStyle. The custom .style file is

saved in the user's profile location.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd)[0]

lyrFile = arcpy.mapping.Layer(r"C:\Project\Data\Rivers.lyr")

arcpy.mapping.AddLayer(df, lyrFile, "TOP")

lyr = arcpy.mapping.ListLayers(mxd, 'Rivers', df)[0]

styleItem = arcpy.mapping.ListStyleItems("USER_STYLE", "Legend Items",

"NewDefaultLegendStyle")[0]

legend = arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT")[0]

legend.updateItem(lyr, styleItem)

del mxd

TableView (arcpy.mapping)
Top

Summary

Provides access to basic table properties.

Discussion

The TableView object is essential for managing stand-alone tables that reside

within a map document (.mxd). It provides access to basic table properties such

as data source information and setting a table's definition query. In addition to

the TableView constructor function, the ListTableViews function also provides the

ability to reference a TableView object.

The TableView constructor function allows you to reference a table outside of a

map document within a workspace. This provides the ability to add an external

table into a map document using the AddTableView function. This function is

similar to MakeTableView, but the difference is that the result from

MakeTableView can't be added permanently into a map document.

The ListTableViews function returns a Python list of TableView objects. It is

necessary to then iterate through each item in the list or specify an index number

to reference a specific TableView object. Tables can be searched within an

entire map document or within a specific data frame. Wildcards can also be used

to limit the search.

A definition query will not work for all workspaces. It is important to use the correct

SQL syntax when working with different workspaces. For example, file

geodatabases and shapefiles have double quotes around a field name (for

example, "field_name"), personal geodatabases have brackets (for

example, [field_name]), and SDE connections don't have any special

characters (for example, field_name). For more information on updating

workspaces and data sources in a map document or layer file, please refer to

the Updating and Fixing Data Sources with arcpy.mapping help topic.

Tables can be removed from a map document using

the RemoveTableView function.

Syntax

TableView (table_view_data_source)

Parameter Explanation
Data

Type

table_view_data_source
A string that includes the full workspace path, including the

name of the table.

String

Properties

Property Explanation
Data

Type

datasetName

(Read Only)

Returns the name of the table's dataset the way it appears in the

workspace, not in the table of contents.

String

dataSource

(Read Only)

Returns table's data source path. It includes

the workspacePath and the datasetName combined.
String

definitionQuery

(Read and Write)

Provides the ability to get or set a tables's definition query.
String

name

(Read and Write)

Provides the ability to set or get the name of a table the way it would

appear in the ArcMap table of contents. Spaces can be included.

String

isBroken

(Read Only)

Returns True if a table's data source is broken. Boolean

workspacePath

(Read Only)

Returns a path to the table's workspace or connection file.
String

Method Overview

Method Explanation

findAndReplaceWorkspacePath

(find_workspace_path,

replace_workspace_path, {validate})

Replaces a table's workspace with a new

workspace path

replaceDataSource (workspace_path,

workspace_type, {dataset_name},

{validate})

Replaces a table's data source in a map document

(.mxd); also provides the ability to switch

workspace types (for example, replace a file

geodatabase workspace with an SDE workspace).

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

Methods

findAndReplaceWorkspacePath (find_workspace_path,

replace_workspace_path, {validate})

Parameter Explanation
Data

Type

find_workspace_path A string that represents the workspace path or connection

file you want to find. If an empty string is passed, then all

workspace paths will be replaced with

the replace_workspace_path parameter depending

on the value of the validate parameter.

String

replace_workspace_path
A string that represents the workspace path or connection

file you want to use to replace.

String

validate If set to True, the workspace will only be updated if

the replace_workspace_path value is a valid

workspace. If it is not valid, the workspace will not be

replaced. If set to False, the method will set the

workspace to match the replace_workspace_path,

regardless of a valid match. In this case, if a match does not

exist, then the table's data source would be broken.

(The default value is True)

Boolean

For more detailed discussion, parameter information, scenarios, and code

samples, please refer to the Updating and fixing data sources help topic.

replaceDataSource (workspace_path, workspace_type, {dataset_name},

{validate})

Parameter Explanation
Data

Type

workspace_path
A string that includes the workspace path to the new data or

connection file.

String

workspace_type
A string keyword that represents the workspace type of the new

data.

 ACCESS_WORKSPACE — A personal geodatabase or Access
workspace

 ARCINFO_WORKSPACE — An ArcInfo coverage workspace

 CAD_WORKSPACE —A CAD file workspace

 EXCEL_WORKSPACE —An Excel file workspace

 FILEGDB_WORKSPACE —A file geodatabase workspace

 NONE —Used to skip the parameter

 OLEDB_WORKSPACE —An OLE database workspace

 PCCOVERAGE_WORKSPACE —A PC ARC/INFO Coverage
workspace

 RASTER_WORKSPACE —A raster workspace

 SDE_WORKSPACE —An SDE geodatabase workspace

 SHAPEFILE_WORKSPACE —A shapefile workspace

 TEXT_WORKSPACE —A text file workspace

 TIN_WORKSPACE —A TIN workspace

 VPF_WORKSPACE —A VPF workspace

String

dataset_name A string that represents the name of the table the way it appears in

the new workspace (not the name of the table in the table of

contents). If dataset_name is not provided,

the replaceDataSource method will attempt to replace the

dataset by finding a table with a the same name as the layer's current

dataset property.

String

validate If set to True, a workspace will only be updated if

the workspace_path value is a valid workspace. If it is not

valid, the workspace will not be replaced. If set to False, the

method will set the workspace to match the workspace_path,

regardless of a valid match. In this case, if a match does not exist,

then the data source would be broken.

(The default value is True)

Boolean

For more detailed discussion, parameter information, scenarios, and code

samples, please refer to the Updating and Fixing Data Sources help topic.

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

Code Sample

TableView example 1

The following script will find a table called Customers in a data frame

named Transportation and will set its definition query.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

for table in arcpy.mapping.ListTableViews(mxd, "", df):

 if table.name.lower() == "trafficaccidents":

 table.definitionQuery = "\"age\" >= 18"

mxd.save()

del mxd

TableView example 2

The following script will reference a table in a file geodatabase and then add that

table into the referenced map document.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

accidentsTable =

arcpy.mapping.TableView(r"C:\Project\Data\Transportation.gdb\Accidents

")

arcpy.mapping.AddTableView(df, accidentsTable)

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, accidentsTable

TextElement (arcpy.mapping)
Top

Summary

The TextElement object provides access to properties that enable its

repositioning on the page layout as well as modifying the text string and font size.

Discussion

The TextElement object represents inserted text within a page layout. This

includes items such as inserted text, callouts, rectangle text, titles, and so on. It

also includes text strings that have been grouped into a group element. It does not

include text strings that are part of a legend or inserted table.

The ListLayoutElements function returns a Python list of page layout element

objects. It is necessary to then iterate through each item in the list or specify an

index number to reference a specific page element object. To return a list

of TextElements only, use the TEXT_ELEMENT constant for

the element_type parameter. A wildcard can also be used to further refine the

search based on the element name.

Existing text elements can be cloned and deleted. This capability was initially

added to support the creation of dynamic graphic tables. To accomplish this, a

map document must be authored with the text elements having the appropriate

symbology. If column field names have different text property settings than the cell

values, then at least two text elements need to be authored. As the information is

read from a table, the text can be cloned using theclone method and positioned

appropriately using other text element properties. When cloning an element it is

very useful to provide a suffix value so that cloned elements can be easily

identified while using the ListLayoutElements function with a wildcard and the

same suffix value. The returned list of elements can be further modified or

deleted using the delete method.

To see a complete code sample on how to created a dynamic graphic table based

on records in a feature class, see the code sample provided in

the GraphicElement class help.

The TextElement is also unique from most other page elements in that it has

a text property. It is with this property that strings can be read and modified. A

common example is to perform a search and replace operation on all text

elements in a page layout. Similar to the ArcMap user interface, the text string

cannot be an empty string; it must include at least an empty space, for

example, textElm.text = " ", not textElm.text = "".

It is highly recommended that each page layout element be given a unique name

so that it can be easily isolated using ArcPy scripting. X and Y element positions

are based on the element's anchor position, which is set via theSize and

Position tab on the element's properties dialog box in ArcMap.

Properties

Property Explanation
Data

Type

angle

(Read and Write)

The text baseline angle of the element in degrees.
Double

elementHeight

(Read and Write)

The height of the element in page units. The units assigned or

reported are in page units.

Double

elementPositionX

(Read and Write)

The X location of the data frame element's anchor position. The

units assigned or reported are in page units.

Double

elementPositionY

(Read and Write)

The Y location of the data frame element's anchor position. The

units assigned or reported are in page units.

Double

elementWidth

(Read and Write)

The width of the element in page units. The units assigned or

reported are in page units.

Double

fontSize

(Read and Write)

The element font size in page units.
Double

name

(Read and Write)

The name of the element.
String

text

(Read and Write)

The text string associated with the element.
String

type

(Read Only)

Returns the element type for any given page layout element.

 DATAFRAME_ELEMENT —Dataframe element

 GRAPHIC_ELEMENT —Graphic element

 LEGEND_ELEMENT —Legend element

 MAPSURROUND_ELEMENT —Mapsurround element

 PICTURE_ELEMENT —Picture element

 TEXT_ELEMENT —Text element

String

Method Overview

Method Explanation

clone ({suffix})
Provides a mechanism to clone an existing graphic text on a page layout.

delete ()
Provides a mechanism to delete an existing text element on a page layout.

Methods

clone ({suffix})

Parameter Explanation
Data

Type

suffix An optional string that is used to tag each newly created text element. The

new element will get the same element name as the parent text element

plus the suffix value plus a numeric sequencer. For example, if the parent

element name is FieldLabeland the suffix value is _copy, the

newly cloned elements would be

named FieldLabel_copy, FieldLabel_copy_1,FieldLabel_

copy_2, and so on. If a suffix is not provided, then the results would

look like FieldLabel_1, FieldLabel_2,FieldLabel_3, and so

on.

String

Grouped text elements can't be cloned. All grouped elements are graphic element

types. First check to see if a graphic element is grouped by using

the isGroup property on the GraphicElement object.

delete ()

It may be necessary to delete cloned elements. Cloned elements, when created,

can be given a custom suffix so they can be easy to find when using the

wildcard parameter on the ListLayoutElements function.

Code Sample

TextElement example 1

The following script will replace all occurrences of the year 2009 with the

year 2010.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for elm in arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT"):

 if elm.text == "2009":

 elm.text = "2010"

mxd.save()

del mxd

TextElement example 2

The following script will update a static 9.3 map document date/time text element

string to now incorporate the new version 10 dynamic text strings. Current time is

appended as a new line below the current date. The text string is set using a

couple of different Python techniques. All produce the same result.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

elm = arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT",

"DateTimeElm")[0]

#Concatenate the date and time with a new line character (\n) using

single quotes so that double quotes are treated as part of the string.

elm.text = 'Date: <dyn type="date" format="short"/> \nTime: <dyn

type="time" format=""/>'

#Use triple quotes and put the line break within the string.

elm.text = """Date: <dyn type="date" format="short"/>

Time: <dyn type="time" format=""/>"""

mxd.save()

del mxd

TextElement example 3

The following script will adjust a string's font size to fit a specified page width. It

essentially sets the initial font size to 100 points and reduces the font size until the

text string fits the desired width. The text string is set up as dynamic text that

represents the map's title information. This script will only run properly if you set

the title property of the map document. This can be found under File > Map

Document Properties.

import arcpy

mxd = arcpy.mapping.MapDocument("CURRENT")

elm = arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT",

"MapTitle")[0]

elmWidth = 4.0

x = 100

elm.text = '<dyn type="document" property="title"/>'

elm.fontSize = x

while elm.elementWidth > float(elmWidth):

 elm.fontSize = x

 x = x - 1

arcpy.RefreshActiveView()

del mxd

UniqueValuesSymbology (arcpy.mapping)
Top

Summary

The UniqueValuesSymbology class provides access to different properties that

allow you to change the appearance of a layer's unique value symbology.

Discussion

The UniqueValuesSymbology class provides access to a limited number of

properties and methods that allow you to automate layer symbology in a map

document (.mxd) or layer file (.lyr). Basic operations such as modifying class

values and labels, or changing the field that the symbology is based on are some

of the properties that can be modified. For access to the complete set of layer

symbology properties and settings, for example, changing individual symbols for

individual classes, it is necessary to author these changes in the ArcMap user

interface and then save those changes to a layer file. These custom settings can

then be applied to existing layers using the UpdateLayer function.

A layer can use any number of symbologies but not all of them can be modified.

Not all layers will use the UniqueValuesSymbology class, so it is important to

first test if the layer is using this symbology class before attempting to make

changes to its properties. The symbologyType property on the Layer class was

designed for this purpose. First test if the symbololgyType for the layer is

unique values (if lyr.symbologyType == "UNIQUE_VALUES":), then

create a variable reference to the UniqueValuesSymbology class for that layer

(lyrSymbolClass = lyr.symbology).

The symbologyType on the Layer object is a read-only property. In other words,

you can't change a unique values symbology to a graduated colors or graduated

symbols symbology. You can only change the properties for a specific symbology

class on a layer. The only way to change the symbology type is by publishing the

desired result to a layer file and using the UpdateLayer function.

The valueField is used to change the field the unique values are based on.

After setting the new field it makes sense to immediately call

the addAllValues method so that an updated list of classes is automatically

generated. Similar to the user interface, calling addAllValues will automatically

sort the classes in accending order. If you want to change the order, then use

the classValues and classLabels properties.

The addAllValues method is also useful for situations where data is

continuously being updated. Layers symbolized using unique values in a map

document don't dynamically update when data is changed.

TheaddAllValues method provides a mechanism to automate this process.

If you are making these symbology modifications via the Python window and you

are referencing a map document using CURRENT, you may not immediately see

the changes in the ArcMap application. To refresh the map document, use

the RefreshActiveView and RefreshTOC functions.

Properties

Property Explanation
Data

Type

classDescriptions

(Read and Write)

A list of strings or numbers that represent the descriptions for

each unique value that can optionally appear in a map document's

legend. These values are only accessible in the ArcMap user

interface by right-clicking a symbol displayed within

the Symbology tab in the Layer Properties dialog box and

selecting Edit Description. The classDescriptions list

needs to have the same number of elements and arranged in the

same order as the classValues property.

List

classLabels

(Read and Write)

A list of strings or numbers that represent the labels for each

unique value that appears in the map document's table of contents

and/or legend items. The classDescriptions list needs to

have the same number of elements and built in the same order as

the classValues property. If this property is not set, its values

will be the same as classValues.

List

classValues

(Read and Write)

A list of strings or numbers that represent the class breaks.

Changing this property will automatically adjust other unique

value symbology properties based on the new information. It is

good practice to always set this value before

settingclassDescriptions and classLabels.

List

showOtherValues

(Read and Write)

Setting this value to True will display a symbol for all values

that don't match the current list of classValues.

Boolean

valueField

(Read and Write)

A string that represents a valid dataset field name used for the

layer's unique value symbology. Changing this value will

automatically adjust other symbology properties based on the

new information.

String

Method Overview

Method Explanation

addAllValues ()
Adds all unique values to the symbology.

http://resources.arcgis.com/en/help/main/10.2/018v/018v0000006s000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v0000001m000000.htm

Methods

addAllValues ()

The addAllValues method updates a layer's symbology so that all values are

displayed in the unique value symbology. This method is useful when unique

values are added to a layer after the symbology has been authored in ArcMap.

Calling the addAllValues method will insert those new values into the list of

existing values.

Code Sample

UniqueValuesSymbology example 1

The following script will change the valueField that the unique value symbology

is based on. Next, the addAllValues is used to update the class list.

import arcpy

mxd = arcpy.mapping.MapDocument("current")

lyr = arcpy.mapping.ListLayers(mxd, "Population")[0]

if lyr.symbologyType == "UNIQUE_VALUES":

 lyr.symbology.valueField = "SUB_REGION"

 lyr.symbology.addAllValues()

arcpy.RefreshActiveView()

arcpy.RefreshTOC()

del mxd

UniqueValuesSymbology example 2

The following script will update a layer's unique value symbology class list based

on the results of an attribute query.

import arcpy

mxd = arcpy.mapping.MapDocument("current")

lyr = arcpy.mapping.ListLayers(mxd, "Population")[0]

arcpy.SelectLayerByAttribute_management(lyr, "NEW_SELECTION",

"\"POP2000\" > 20000000")

stateList = []

rows = arcpy.da.SearchCursor(lyr, ["STATE_NAME"])

for row in rows:

 stateList.append(row[0])

if lyr.symbologyType == "UNIQUE_VALUES":

 lyr.symbology.classValues = stateList

 lyr.symbology.showOtherValues = False

arcpy.RefreshActiveView()

arcpy.RefreshTOC()

del mxd

AddLayer (data_frame, add_layer, {add_position})

AddLayerToGroup (data_frame, target_group_layer, add_layer, {add_position})

AddTableView (data_frame, add_table)

AnalyzeForMSD (map_document)

AnalyzeForSD (sddraft)

ConvertToMSD (map_document, out_msd, {data_frame}, {msd_anti_aliasing}, {msd_text_anti_aliasing})

ConvertWebMapToMapDocument (webmap_json, {template_mxd}, {notes_gdb}, {extra_conversion_options})

CreateGISServerConnectionFile (connection_type, out_folder_path, out_name, server_url, server_type, {use_arcgis_desktop_staging_folder}, {staging_folder_path}, {username}, {password}, {save_username_password})

CreateMapSDDraft (map_document, out_sddraft, service_name, {server_type}, {connection_file_path}, {copy_data_to_server}, {folder_name}, {summary}, {tags})

DeleteMapService (connection_url_or_name, server, service_name, {folder_name}, {connection_username}, {connection_password}, {connection_domain})

ExportReport (report_source, report_layout_file, output_file, {dataset_option}, {report_title}, {starting_page_number}, {page_range}, {report_definition_query}, {extent}, {field_map})

ExportToAI (map_document, out_ai, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {image_quality}, {colorspace}, {picture_symbol}, {convert_markers})

ExportToBMP (map_document, out_bmp, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {world_file}, {color_mode}, {rle_compression})

ExportToEMF (map_document, out_emf, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {image_quality}, {description}, {picture_symbol}, {convert_markers})

ExportToEPS (map_document, out_eps, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {image_quality}, {colorspace}, {ps_lang_level}, {image_compression}, {picture_symbol}, {convert_markers}, {embed_fonts}, {jpeg_compression_quality})

ExportToGIF (map_document, out_gif, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {world_file}, {color_mode}, {gif_compression}, {background_color}, {transparent_color}, {interlaced})

ExportToJPEG (map_document, out_jpeg, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {world_file}, {color_mode}, {jpeg_quality}, {progressive})

ExportToPDF (map_document, out_pdf, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {image_quality}, {colorspace}, {compress_vectors}, {image_compression}, {picture_symbol}, {convert_markers}, {embed_fonts}, {layers_attributes}, {georef_info},
{jpeg_compression_quality})

ExportToPNG (map_document, out_png, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {world_file}, {color_mode}, {background_color}, {transparent_color}, {interlaced})

ExportToSVG (map_document, out_svg, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {image_quality}, {compress_document}, {picture_symbol}, {convert_markers}, {embed_fonts})

ExportToTIFF (map_document, out_tiff, {data_frame}, {df_export_width}, {df_export_height}, {resolution}, {world_file}, {color_mode}, {tiff_compression}, {geoTIFF_tags})

InsertLayer (data_frame, reference_layer, insert_layer, {insert_position})

Layer (lyr_file_path)

ListBookmarks (map_document, {wildcard}, {data_frame})

ListBrokenDataSources (map_document_or_layer)

ListDataFrames (map_document, {wildcard})

ListLayers (map_document_or_layer, {wildcard}, {data_frame})

ListLayoutElements (map_document, {element_type}, {wildcard})

ListMapServices (connection_url_or_name, server, {connection_username}, {connection_password}, {connection_domain})

ListPrinterNames ()

ListStyleItems (style_file_path, style_folder_name, {wildcard})

ListTableViews (map_document, {wildcard}, {data_frame})

MapDocument (mxd_path)

MoveLayer (data_frame, reference_layer, move_layer, {insert_position})

PDFDocumentCreate (pdf_path)

PDFDocumentOpen (pdf_path, {user_password}, {master_password})

PrintMap (map_document, {printer_name}, {data_frame}, {out_print_file}, {image_quality})

PublishMSDToServer (msd_path, connection_url_or_name, server, service_name, {folder_name}, {service_capabilities}, {connection_username}, {connection_password}, {connection_domain})

RemoveLayer (data_frame, remove_layer)

RemoveTableView (data_frame, remove_table)

TableView (table_view_data_source)

UpdateLayer (data_frame, update_layer, source_layer, {symbology_only})

UpdateLayerTime (data_frame, update_layer, source_layer)

ArcPy.Mapping Functions
-with required and {optional} parameters

AddLayer (arcpy.mapping)
Top

Summary

Provides the ability to add a layer to a data frame within a map document (.mxd)

using simple placement options.

Discussion

AddLayer is an easy way to add a layer or group layer into a map document. It

can add a layer with auto-arrange logic that places the new layer in a data frame

similarly to how the Add Data button works in ArcMap; it places the layer based on

layer weight rules and geometry type. The other placement choices are either at

the top or the bottom of a data frame. For more precise layer placement options,

refer to the InsertLayer function.

AddLayer is the only function that can add a layer into an empty data

frame. AddLayer does not allow you to add layers to a layer file or within a group

layer. If interested in managing layer files, refer to the Layer and

AddLayerToGroup functions.

The layer that is added must reference an already existing layer (keep in mind that

a layer can be a group layer as well). The source can either come from a layer file

on disk, from within the same map document and data frame, the same map

document but different data frame, or even from a completely separate map

document.

The way a layer appears in the table of contents (TOC) after it is added depends

on the source layer and how it appears. For example, some layers are completely

collapsed and do not display their symbol(s) in the TOC. This setting is built into

the layer. If a layer is collasped, saved to a layer file, and then added to a map

document, the layer will be collasped in the new map document when added

via AddLayer.

Syntax

AddLayer (data_frame, add_layer, {add_position})

Parameter Explanation Data Type

data_frame A reference to a DataFrame object within a map document. DataFrame

add_layer A reference to a Layer object representing the layer to be added. This

reference can point to a layer file on disk or a layer within a map

document.

Layer

add_position
A constant that determines the placement of the added layer within a

data frame.

 AUTO_ARRANGE —Automatically places the layer similar to
how the Add Data button works in ArcMap

 BOTTOM —Places the layer at the bottom of the data frame

 TOP —Places the layer at the top of the data frame

(The default value is AUTO_ARRANGE)

String

Code Sample

AddLayer example 1:

The following script will add a new layer from a layer (.lyr) file on disk and place

it at the bottom of the data frame called New Data Frame.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "New Data Frame")[0]

addLayer = arcpy.mapping.Layer(r"C:\Project\Data\Orthophoto.lyr")

arcpy.mapping.AddLayer(df, addLayer, "BOTTOM")

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, addLayer

AddLayer example 2:

The following script will add a new group layer called NE_Layers from another,

independent map document and use auto-arrange to place the group layer within

a data frame called New Data Frame.

import arcpy

#Reference layer in secondary map document

mxd2 = arcpy.mapping.MapDocument(r"C:\Project\ProjectTemplate.mxd")

df2 = arcpy.mapping.ListDataFrames(mxd2, "Layers")[0]

addLayer = arcpy.mapping.ListLayers(mxd2, "NE_Layers", df2)[0]

#Add layer into primary map document

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "New Data Frame")[0]

arcpy.mapping.AddLayer(df, addLayer, "AUTO_ARRANGE")

#Save to a new map document and clear variable references

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, mxd2

AddLayerToGroup (arcpy.mapping)
Top

Summary

Provides the ability to add a layer to a group layer within a map document (.mxd)

using simple placement options.

Discussion

AddLayerToGroup is an easy way to add a layer into an already existing group

layer. It can add a layer with auto-arrange logic that places the new layer in a

group layer similarly to how the Add Data button works in ArcMap; it places the

layer based on layer weight rules and geometry type. The other placement

choices are either at the top or the bottom of a group layer.

AddLayerToGroup is the only function that can add a layer into an empty group

layer. AddLayerToGroup does not allow you to add layers to group layers within

a layer file. Layer files should be managed and authored using ArcMap.

The target group layer must be a group layer. The isGroupLayer property on

the Layer object is a way of confirming if the returned Layer object is truely a

group layer.

The layer that is added must reference an already existing layer (keep in mind that

a layer can be a group layer as well). The source can either come from a layer file

on disk, from within the same map document and data frame, the same map

document but different data frame, or even from a completely separate map

document.

The way a layer appears in the table of contents (TOC) after it is added depends

on the source layer and how it appears. For example, some layers are completely

collapsed and do not display their symbol(s) in the TOC. This setting is built into

the layer. If a layer is collasped, saved to a layer file, and then added to a map

document, the layer will be collasped in the new map document when added

via AddLayerToGroup.

Syntax

AddLayerToGroup (data_frame, target_group_layer, add_layer,

{add_position})

Parameter Explanation Data Type

data_frame A reference to a DataFrame object that contains the group

layer to which the new layer will be added.
DataFrame

target_group_layer A Layer object representing the group layer to which the new

layer will be added. It must be a group layer.
Layer

add_layer A reference to a Layer object representing the layer to be

added. This reference can point to a layer file on disk or a

layer in a map document.

Layer

add_position
A constant that determines the placement of the added layer

within a data frame.

 AUTO_ARRANGE —Automatically places the layer similar
to how the Add Data button works in ArcMap

 BOTTOM —Places the layer at the bottom of the data
frame

 TOP —Places the layer at the top of the data frame

(The default value is AUTO_ARRANGE)

String

Code Sample

AddLayerToGroup example:

The following script will add a new layer from a layer (.lyr) file on disk and place

it at the bottom of a group layer called 24000 Scale Data in a data frame

called County Maps.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

targetGroupLayer = arcpy.mapping.ListLayers(mxd, "24000 Scale Data",

df)[0]

addLayer =

arcpy.mapping.Layer(r"C:\Project\Data\StreetsWithLabels.lyr")

arcpy.mapping.AddLayerToGroup(df, targetGroupLayer, addLayer,

"BOTTOM")

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, addLayer

AddTableView (arcpy.mapping)
Top

Summary

Provides the ability to add a table to a data frame within a map document (.mxd).

Discussion

AddTableView provides a way to add a table into a map document. A reference

to a TableView object must exist first. It can be a reference to a table in another

map document by using the ListTableViews function, or it can be a reference to a

table in a workspace by using the TableView function.

Syntax

AddTableView (data_frame, add_table)

Parameter Explanation Data Type

data_frame A reference to a DataFrame object within a map document. DataFrame

add_table A reference to a TableView object representing the table to be added.

This reference can point to a table within an existing map document

or it can reference a table in a workspace via the TableView function.

TableView

Code Sample

AddTableView example

The following script will add three tables from three different workspaces to a

single data frame in a map document. The different workspaces are

shapefile/dBASE, file geodatabase, and SDE.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "New Data Frame")[0]

dbf_Table = arcpy.mapping.TableView(r"C:\Project\Data\customers.dbf")

fGDB_Table =

arcpy.mapping.TableView(r"C:\Project\Data\fGBD.gdb\customers")

SDE_Table =

arcpy.mapping.TableView(r"C:\PathToSDEConnectionfile.sde\customers")

arcpy.mapping.AddTableView(df, dbf_Table)

arcpy.mapping.AddTableView(df, fGDB_Table)

arcpy.mapping.AddTableView(df, SDE_Table)

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd

AnalyzeForMSD (arcpy.mapping)
Top

Summary

Legacy:

Starting at ArcGIS 10.1, Map Server Definition (.msd) files have been replaced

with Service Definition Draft (.sddraft) and Service Definition (.sd) files.

Please use the AnalyzeForSD function instead.

Analyzes map documents (.mxd) to determine sources for potential suitability and

performance issues when converting a map to a map service definition (.msd) file.

Discussion

Starting at ArcGIS 10.1, Map Server Definition (.msd) files have been replaced

with Service Definition Draft (.sddraft) and Service Definition (.sd) files. See

the following help topics for more information: What to expect when migrating to

ArcGIS 10.2 for Server and Migration to ArcGIS 10.2 for Server.

Consider using the AnalyzeForSD function instead.

Syntax

AnalyzeForMSD (map_document)

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002p0000000.htm

AnalyzeForSD (arcpy.mapping)
Top

Summary

Analyzes Service Definition Draft (.sddraft) files to determine suitability and

sources of potential performance issues before converting a Service Definition

Draft file to a Service Definition (.sd) file.

Discussion

An important task that you can perform is analyzing your Service Definition Draft

file to identify errors and other potential issues that you may need to address

before you can create a Service Definition file. AnalyzeForSD can be used with

Service Definition Drafts for map, geoprocessing and image services. This

function returns a Python dictionary containing errors, warnings and messages.

For example, when working with Service Definition Drafts for map services, this

function can:

 Help you identify layer and symbology types that are not supported for

optimized map drawing performance.

 Show warnings for issues that can potentially slow down display performance.

 List other information messages about your map document that can help you

optimize its performance as a map service.

Analysis for a map Service Definition Draft file is based on many factors including

the data used by the map; map, layer, and symbol properties; set service

properties such as chosen capabilities and associated properties the service will

support; and the server type hosting the service. You will see three types of

messages in the Python dictionary: errors, warnings, and information.

Errors for a map Service Definition Draft file typically refer to your map's use of

map layer types or display options that are not supported for map services. All

errors must be repaired before you can create a Service Definition file. Warnings

and other messages identify issues that may affect drawing performance and

appearance. Warnings alert you to issues in which drawing performance or

drawing appearance may be affected, but these issues do not preclude you from

converting the Service Definition Draft file to a Service Definition file.

After analyzing the Service Definition Draft using AnalyzeForSD, it can then be

converted to a fully consolidated Service Definition (.sd) file using the Stage

Service geoprocessing tool. Staging compiles all the necessary information

needed to successfully publish the GIS resource. If you have chosen to copy data

to the server, the data will be added when the Service Definition Draft is staged.

Finally, the Service Definition file can be uploaded and published as a GIS service

to a specified GIS server using the Upload Service Definition geoprocessing tool.

This step takes the Service Definition file, copies it onto the server, extracts

required information and publishes the GIS resource. For more information, see

the overview of the Publishing toolset.

The functions to create Service Definition Drafts for map, geoprocessing, image

and geocoding services are:

CreateMapSDDraftCreateGPSDDraftCreateImageSDDraftCreateGeocodeSDDraft

Syntax

AnalyzeForSD (sddraft)

Parameter Explanation
Data

Type

sddraft A string that represents the path and file name for the Service Definition

Draft (.sddraft) file.

String

Return Value

Data Type Explanation

Dictionary
Returns a Python Dictionary of information messages, warnings, and errors.

http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001q000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000006q000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000006q000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v00000094000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v00000094000000.htm

Code Sample

AnalyzeForSD example 1

The following script analyzes a Service Definition Draft (.sddraft) file to identify

potential performance bottlenecks and map errors that you may need to address

before you can create a Service Definition (.sd) file.

import arcpy

analysis = arcpy.mapping.AnalyzeForSD(r"C:\Project\Counties.sddraft")

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

AnalyzeForSD example 2

The following script demonstrates the complete publishing of map services using

arcpy.mapping workflow. Automating the publishing of map services can be

accomplished by using a combination of arcpy.mapping functions and the

geoprocessing tools in the Publishing toolset. The workflow begins with a map

document that you want to publish. First, use

the arcpy.mapping function CreateMapSDDraft to create a service definition

draft. Next, you should analyze the service definition draft for issues that could

prevent you from publishing successfully by using the AnalyzeForSD function.

After analyzing the service definition draft and addressing serious issues, it is time

to stage the service definition. Staging takes the service definition draft and

consolidates all the information needed to publish the service into a

complete service definition. Use the Stage_Service geoprocessing tool to stage

the service definition. Finally, use the Upload_Service_Definition geoprocessing

tool to upload the service definition to the server and publish the map service.

import arcpy

define local variables

wrkspc = 'C:/Project/'

mapDoc = arcpy.mapping.MapDocument(wrkspc + 'counties.mxd')

con = r'GIS Servers\arcgis on MyServer_6080 (admin).ags'

service = 'Counties'

sddraft = wrkspc + service + '.sddraft'

sd = wrkspc + service + '.sd'

create service definition draft

arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'ARCGIS_SERVER', con, True, None)

analyze the service definition draft

analysis = arcpy.mapping.AnalyzeForSD(sddraft)

stage and upload the service if the sddraft analysis did not contain

errors

if analysis['errors'] == {}:

 # Execute StageService

 arcpy.StageService_server(sddraft, sd)

 # Execute UploadServiceDefinition

 arcpy.UploadServiceDefinition_server(sd, con)

else:

 # if the sddraft analysis contained errors, display them

 print analysis['errors']

http://resources.arcgis.com/en/help/main/10.2/0154/0154000003v5000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm

ConvertToMSD (arcpy.mapping)
Top

Summary

Legacy:

Starting at ArcGIS 10.1, Map Server Definition (.msd) files have been replaced

with Service Definition Draft (.sddraft) and Service Definition (.sd) files.

Please use the CreateMapSDDraft function instead.

Converts a map to a map service definition (.msd) file.

Discussion

Starting at ArcGIS 10.1, Map Server Definition (.msd) files have been replaced

with Service Definition Draft (.sddraft) and Service Definition (.sd) files. See

the following help topics for more information: What to expect when migrating to

ArcGIS 10.2 for Server and Migration to ArcGIS 10.2 for Server.

Consider using the CreateMapSDDraft function instead.

Syntax

ConvertToMSD (map_document, out_msd, {data_frame}, {msd_anti_aliasing},

{msd_text_anti_aliasing})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_msd
A string that represents the path and file name for the

output MSD file.

String

data_frame A variable that references a DataFrame object. If more

than one data frame exists, it is important to specify

which data frame will be the active data frame for the

published service. The default value is the active data

frame.

(The default value is USE_ACTIVE_VIEW)

DataFrame

msd_anti_aliasing
A string that sets antialiasing for nontext items within

the saved MSD.

 NONE — No antialiasing is performed.

 FASTEST — Minimal antialiasing is performed,
optimized for speed.

 FAST — Some antialiasing is performed,
optimized for speed with better quality than
FASTEST.

 NORMAL — A good balance of speed and quality.

 BEST — The best quality antialiasing. This option
takes the longest to render.

(The default value is NONE)

String

msd_text_anti_aliasing
A string that sets antialiasing for text items within the

saved MSD.

 FORCE — Text is always drawn with antialiasing,
regardless of the individual font's parameters.

 NORMAL — Antialiasing is performed as
determined by the font. Each individual font has
parameters created within it by the font author
that defines which sizes the font should draw
with antialiasing.

 NONE — No antialiasing is performed.

(The default value is NONE)

http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002p0000000.htm

ConvertWebMapToMapDocument
(arcpy.mapping)
Top

Summary

Converts a web map (in JSON format) that you intend to print or export to a map

document. The map document can be further modified before finally being printed

or exported.

Discussion

The ConvertWebMapToMapDocument function will convert a web map that you

intend to print or export to a map document. Once the document is converted, the

full state of the web map exists in the map document. The map document can

then be further modified before finally being printed or exported to a common

format such as PDF. ConvertWebMapToMapDocument would most commonly

be used when printing a map from a web application using the ArcGIS Web APIs.

The ConvertWebMapToMapDocument function is primarily intended for

workflows where the web map needs to be modified or exported using

arcpy.mapping functions. Some example workflows that can be met using

theConvertWebMapToMapDocument function are as follows:

 Swapping out service layers for local vector data—In arcpy.mapping

scripts, service layers can be identified and swapped out for layers that point to

local data. This is commonly desired when a vector output is wanted instead of

service layers. For example, vector PDF output supports the following in PDF

viewing applications: toggling layer visibility, viewing of feature attributes, and

viewing of map coordinates. One way to accomplish swapping service layers

for vector data would be to stage template map documents that contain vector

equivalents of all the possible service layers. After executing

the ConvertWebMapToMapDocument function, loop through all the layers in

the output map document, removing all layers except the vector layers that

correspond to the service layers in the web map. This workflow would be used

when swapping your own services with the corresponding vector data that you

already have.

 Creating map books—A map series can be generated if Data Driven Pages is

enabled on the template_mxd. Moreover, the output map document can be

exported as a PDF and inserted into other PDFs using the

PDFDocument class to create a complete map book.

 Exporting using advanced options—All of the arcpy.mapping export

functions have many advanced options. For example,

the ExportToPDF function has parameters for controlling raster and vector

compression, defining colorspace, embedding fonts, and so on.

 Controlling the appearance of the legend—The arcpy.mapping module

provides the ability to remove legend items or modify their style items with

custom settings using the LegendElement class and ListStyleItemsfunction.

Note:

ArcGIS for Server also includes a geoprocessing service named PrintingTools.

The PrintingTools service can be used in a web application to generate a high-

cartographic-quality printable image. For more information regarding the

PrintingTools service, see the following:

Printing in web applications

Once you have a Python script that prepares the map for printing, you can

encapsulate it in a geoprocessing script tool. You can then publish the script tool

as an ArcGIS Server geoprocessing service. Each ArcGIS Web API has a Print

Task that you can use in your web applications. The Print Task has a URL property

that will point to the REST URL of the geoprocessing service you created. For

more information on using the ArcGIS Web APIs, consult the help for your

preferred developer platform at http://resources.arcgis.com/content/web/web-apis.

For more information on geoprocessing services, see the following:

What is a geoprocessing service?A quick tour of authoring and sharing

geoprocessing servicesA quick tour of publishing a geoprocessing serviceEssential

vocabulary for geoprocessing services

http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w5000000.htm
http://resources.arcgis.com/content/web/web-apis
http://resources.arcgis.com/en/help/main/10.2/0057/00570000005w000000.htm
http://resources.arcgis.com/en/help/main/10.2/0057/00570000005w000000.htm
http://resources.arcgis.com/en/help/main/10.2/0057/00570000007q000000.htm
http://resources.arcgis.com/en/help/main/10.2/0057/00570000007q000000.htm
http://resources.arcgis.com/en/help/main/10.2/0057/00570000005s000000.htm
http://resources.arcgis.com/en/help/main/10.2/0057/00570000005s000000.htm

When using ConvertWebMapToMapDocument in a geoprocessing service in the

ArcGIS Web APIs, the parameter names of the script tool must match the ArcGIS

Web API Print Task parameters:

Parameter Name
Data

Type
Explanation

Web_Map_as_JSON String A JSON representation of the state of the map to be exported

as it appears in the web application. The ArcGIS Web APIs

(JavaScript, Flex, and Silverlight) allow developers to easily

get this JSON string from the web application.

Output_File File
Output file name. The extension of the file depends on

the Format parameter.

Format String The format in which the map image for printing will be

delivered. The following strings are accepted:

 PNG8 (default if the parameter is left blank)

 PNG

 PDF

 PNG32

 JPG

 GIF

 EPS

 SVG

 SVGZ

Layout_Template String Either a name of a template from the list or the keyword

MAP_ONLY. When MAP_ONLY is chosen or an empty

string is passed in, the output map does not contain any page

layout surroundings (for example, title, legends, and scale

bar).

Tip:

Any number of additional user-defined parameters can also be added. The ability

to pass extra parameters into a custom print task is useful, as it allows you to

collect any number of extra parameters from the web application and pass them

into the Python script.

ConvertWebMapToMapDocument would most commonly be used when printing

a map from a web application. When you use the ArcGIS Web API Print Task, you

don't need to create the web map JSON; the APIs take care of it for you. However,

before the script can be published and used in the web APIs, it has to be run

locally. Any valid web map JSON string can be used when running the script

locally. A JSON string similar to what your web application will be returning may

be required for your script to run successfully. See ExportWebMap specification to

understand how this text should be formatted. A sample string is below:

{

 "layoutOptions": {

 "titleText": "Simple WebMap JSON example"

 },

 "operationalLayers": [

 {

 "url":

"http://maps1.arcgisonline.com/ArcGIS/rest/services/USA_Federal_Lands/

MapServer",

 "visibility": true

 }

],

 "exportOptions": {

 "outputSize": [

 1500,

 1500

]

 },

 "mapOptions": {

 "extent": {

 "xmin": -13077000,

 "ymin": 4031000,

 "xmax": -13023000,

 "ymax": 4053000

 }

 },

 "version": "1.4"

}

http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w8000000.htm

When running the script tool, the JSON string can be copied and pasted into

the Web_Map_as_JSON input parameter. However, the line breaks must be

removed for the string to be valid input. A sample JSON string with line breaks

removed is below:

{"layoutOptions": {"titleText": "Simple WebMap JSON

example"},"operationalLayers": [{"url":

"http://maps1.arcgisonline.com/ArcGIS/rest/services/USA_Federal_Lands/

MapServer","visibility": true}],"exportOptions": {"outputSize":

[1500,1500]},"mapOptions": {"extent": {"xmin": -13077000,"ymin":

4031000,"xmax": -13023000,"ymax": 4053000}},"version": "1.4"}

Tip:

For publishing purposes, you can leave the Web_Map_as_JSON input parameter

blank, as the ArcGIS Web APIs will provide the web map JSON in the web

application. You can leave the Web_Map_as_JSON input parameter blank

provided the Python script was written in such a way as to not fail with blank

input. For example, the script doesn't look for web map layers by name. If the

script fails on the server due to an error in the script, it will have to be fixed locally

and republished to the server. Therefore, it is good practice to ensure the script

works locally before publishing by testing with a valid web map JSON string or

using a debug map document that contains all the elements that would be in the

web map JSON.

Tip:

As mentioned before, the JSON string returned from the ArcGIS Web APIs

contains the full state of the web map. The layoutOptions object in the JSON

string warrants extra discussion, as it will automatically update layout elements

that can be staged in the template_mxd. For example, if the JSON has

a titleTextsetting, and the template_mxd has a Title dynamic text element,

the title in the template map document layout will be updated with

the titleText value. For more information, see the layoutOptions section

in ExportWebMap specification.

When you encapsulate the Python script that

uses ConvertWebMapToMapDocument in a geoprocessing service, you need to

make sure that ArcGIS for Server can see the template map documents and data

used in the web application. It is best practice to use a folder that is registered

with ArcGIS for Server. For more information on registering data, see the

following:

Making your data accessible to ArcGIS ServerAbout registering your data with

ArcGIS ServerRegistering your data with ArcGIS Server using ArcGIS for Desktop

When authoring template map documents in the registered folder, it is best

practice to use relative paths. That way, ArcGIS for Server will be able to find the

data in the registered folder relative to the location of the map documents.

See Referencing data in the map for more information.

Caution:

When using ConvertWebMapToMapDocument, relative paths to layers must be

pointing to data at, below, or one level above the path of the template_mxd.

Caution:

If you choose to not use registered folders, template map documents and data

will be packaged and copied to the server. During packaging, data may be moved

and re-sourced with relative paths to a folder structure

that ConvertWebMapToMapDocument cannot resolve. For this reason, usage of

registered folders is recommended.

In addition to creating your own template map documents, you can also use the

preauthored templates that ship with the software. They are located

at<installation_directory>\Templates\ExportWebMapTemplates.

These templates contain map elements such as a legend, current date dynamic

text, a scale bar, and scale text.

By default, notes overlays or client-side graphics from the web application will be

stored in an in-memory workspace. The in-memory workspace is temporary and

will be deleted when the application is closed. To make a permanent copy of the

output map document that contains notes overlays, specify a notes_gdb; then

use the Consolidate Map or Package Map geoprocessing tools to make a copy of

the output map document. The only time you would need to specify

a notes_gdb is if you plan on making a permanent copy of the output map

document. See code example 2 below. If the web map does not contain notes

overlays, you can use the saveACopy method from the MapDocument class to

make a permanent copy of the output map document.

http://resources.arcgis.com/en/help/main/10.2/00s9/00s900000013000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w8000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/01540000039r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/01540000039r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/015400000505000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/015400000505000000.htm
http://resources.arcgis.com/en/help/main/10.2/0066/00660000000w000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/0017000000q3000000.htm
http://resources.arcgis.com/en/help/main/10.2/0017/0017000000q5000000.htm

The arcpy.mapping module also provides methods to control the appearance of

the legend in the output map document's layout. See the removeItem method on

the LegendElement class to remove legend items. The advanced tutorial listed

below demonstrates this workflow. See the updateItem method on

the LegendElement class and the ListStyleItems method to update legend items.

Be sure to read the following tutorials. They demonstrate the entire vector printing

and exporting with ConvertWebMapToMapDocument workflow: authoring the

staged template map documents, authoring the Python script, creating the

geoprocessing service, and creating the web application.

 Tutorial: Basic web map printing and exporting using arcpy.mapping

 Tutorial: Advanced web map printing and exporting using arcpy.mapping

Syntax

ConvertWebMapToMapDocument (webmap_json, {template_mxd},

{notes_gdb}, {extra_conversion_options})

Parameter Explanation Data Type

webmap_json The web map for printing in JavaScript Object

Notation (JSON). See the ExportWebMap JSON

specification for more information. The ArcGIS Web

APIs (JavaScript, Flex, and Silverlight) allow

developers to easily get this JSON string from the web

application.

String

template_mxd A string representing the path and file name to a map

document (.mxd) to use as the template for the page

layout. The contents of the web map will be inserted

into the data frame that was active at the time

the template_mxd was saved. Layers in

thetemplate_mxd file's active data frame (and all

other data frames) will be preserved in the

output mapDocument.

(The default value is None)

String

notes_gdb A string representing the path to a new or existing file

geodatabase or an existing enterprise geodatabase

connection where graphic features should be written.

This parameter should only be used if graphic features

from the web map JSON need to be preserved

permanently. In most cases, this parameter is not

required, as a temporary in-memory workspace will be

used to store graphic features. This parameter allows

you to save graphic features to persistent storage,

which is essential if you plan to use the map document

for operations that require saving or loading from disk

(for example, packaging or consolidating). The path

must end with a .gdb or .sde extension.

String

(The default value is None)

extra_conversion_options
A dictionary of credentials for secured services. This

parameter is required if the services in the web map

JSON require a user name and password to view. Keys

accepted in the dictionary are as follows:

 SERVER_CONNECTION_FILE

 WMS_CONNECTION_FILE

 WMTS_CONNECTION_FILE

An example of key value pairs is as follows:

credentials =

{"SERVER_CONNECTION_FILE":r"Z:\ArcGIS2

on MyServer (user).ags",

WMS_CONNECTION_FILE":r"Z:\USA on

MyServer.wms"}

result =

arcpy.mapping.ConvertWebMapToMapDocume

nt(json,

extra_conversion_options=credentials)

(The default value is None)

Dictionary

Return Value

Data

Type
Explanation

tuple
Returns a Python named Tuple of web map and request properties:

 mapDocument —The map document object created as output of the function.

 DPI —The requested DPI of the export from the web app.

 outputSizeHeight —The height of the image as specified from the web app. For use
when performing a data view export.

 outputSizeWidth —The width of the image as specified from the web app. For use
when performing a data view export.

Caution:

ConvertWebMapToMapDocument will create temporary map documents

(.mxd files) in the system temp folder. On Windows Vista and 7, this is located

at C:\Users\<user name>\AppData\Local\Temp. It is the user's

responsibility to manage the map documents in this folder. To delete these temporary

map documents in scripts, see the clean upsection in the code samples below.

http://resources.arcgis.com/en/help/main/10.2/0057/0057000000mq000000.htm
http://resources.arcgis.com/en/help/main/10.2/0057/0057000000mr000000.htm
http://resources.arcgis.com/en/help/main/10.2/0057/0057000000mq000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w8000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w8000000.htm

Code Sample

ConvertWebMapToMapDocument example 1

In this example, the script reads in a web map JSON, a template map document,

and existing PDF documents to which the web map will be appended. The output

map document from the ConvertWebMapToMapDocumentfunction is exported as

a PDF and inserted into other PDF files using the PDFDocument class.

import arcpy

import os

import uuid

The template location in the server data store

templatePath = '//MyMachine/MyDataStore/WebMap'

Input WebMap json

Web_Map_as_JSON = arcpy.GetParameterAsText(0)

Input Layout template

Layout_Template = arcpy.GetParameterAsText(1)

if Layout_Template == '#' or not Layout_Template:

 Layout_Template = "Landscape11x17"

PDF Title Page

PDF_Title = arcpy.GetParameterAsText(2)

if PDF_Title == '#' or not PDF_Title:

 PDF_Title = "TitlePage.PDF"

PDF End Page

PDF_End = arcpy.GetParameterAsText(3)

if PDF_End == '#' or not PDF_End:

 PDF_End = "ContactInfo.PDF"

Get the requested map document

templateMxd = os.path.join(templatePath, Layout_Template + '.mxd')

Get the requested PDF files

PDF_Title_File = os.path.join(templatePath, PDF_Title)

PDF_End_File = os.path.join(templatePath, PDF_End)

Convert the WebMap to a map document
result = arcpy.mapping.ConvertWebMapToMapDocument(Web_Map_as_JSON,

 templateMxd)

mxd = result.mapDocument

Use the uuid module to generate a GUID as part of the output name

This will ensure a unique output name

WebMapPDF = os.path.join(arcpy.env.scratchFolder,

 'WebMap_{}.pdf'.format(str(uuid.uuid1())))

Export the WebMap to PDF

arcpy.mapping.ExportToPDF(mxd, WebMapPDF)

Create a new "master" output PDF Document

Append Title, WebMap and End PDFs to it

Output_Name = os.path.join(arcpy.env.scratchFolder,

'OutputWithWebMap_{}.pdf'.format(str(uuid.uuid1())))

pdfDoc = arcpy.mapping.PDFDocumentCreate(Output_Name)

pdfDoc.appendPages(PDF_Title_File)

pdfDoc.appendPages(WebMapPDF)

pdfDoc.appendPages(PDF_End_File)

pdfDoc.saveAndClose()

Set the output parameter to be the output PDF

arcpy.SetParameterAsText(4, Output_Name)

Clean up - delete the map document reference

filePath = mxd.filePath

del mxd, result

os.remove(filePath)

ConvertWebMapToMapDocument example 2

In this example, the ConsolidateMap geoprocessing tool is used to make a

permanent copy of the output map document, including the notes overlays.

import arcpy

import os

import uuid

The template location in the registered folder

templatePath = '//MyMachine/Austin/WebMap'

Input web map json

Web_Map_as_JSON = arcpy.GetParameterAsText(0)

Format for output

Format = arcpy.GetParameterAsText(1)

if Format == '#' or not Format:

 Format = "PDF"

Input Layout template

Layout_Template = arcpy.GetParameterAsText(2)

if Layout_Template == '#' or not Layout_Template:

 Layout_Template = "Landscape11x17"

Get the requested map document

templateMxd = os.path.join(templatePath, Layout_Template + '.mxd')

Since we are making a permanent copy of the notes overlays,

we need to specify a notes geodatabase

notes = os.path.join(arcpy.env.scratchFolder, 'mynotes.gdb')

Convert the web map to a map document

result = arcpy.mapping.ConvertWebMapToMapDocument(Web_Map_as_JSON,

templateMxd, notes)

mxd = result.mapDocument

Save the web map and notes overlays to a new map document using

ConsolidateMap

arcpy.ConsolidateMap_management(mxd.filePath,

 os.path.join(arcpy.env.scratchFolder,

'ConsolidateWebMap'))

Clean up - delete the map document reference

filePath = mxd.filePath

del mxd, result

os.remove(filePath)

http://resources.arcgis.com/en/help/main/10.2/0017/0017000000q3000000.htm

ConvertWebMapToMapDocument example 3

In this example, a staged template map document is used that contains vector

equivalents of all the possible service layers. After executing

the ConvertWebMapToMapDocument function, the script loops through all the

layers in the output map document, removing all layers except the vector layers

that correspond to the service layers in the web map JSON. The output map

document layout is then exported to either PDF or PNG.

import arcpy

import os

import uuid

The template location in the registered folder

templatePath = '//MyComputerName/MyDataStore/USA'

Input web map json

Web_Map_as_JSON = arcpy.GetParameterAsText(0)

Format for output

Format = arcpy.GetParameterAsText(1)

if Format == '#' or not Format:

 Format = "PDF"

Input Layout template

Layout_Template = arcpy.GetParameterAsText(2)

if Layout_Template == '#' or not Layout_Template:

 Layout_Template = "NorthwesternUSA"

Get the requested map document

templateMxd = os.path.join(templatePath, Layout_Template + '.mxd')

Convert the web map to a map document

result = arcpy.mapping.ConvertWebMapToMapDocument(Web_Map_as_JSON,

templateMxd)

mxd = result.mapDocument

Reference the data frame that contains the web map

Note: ConvertWebMapToMapDocument renames the active dataframe in the

template_mxd to "Webmap"

df = arcpy.mapping.ListDataFrames(mxd, 'Webmap')[0]

Get a list of all service layer names in the map

serviceLayersNames = [slyr.name for slyr in

arcpy.mapping.ListLayers(mxd, data_frame=df)

 if slyr.isServiceLayer and slyr.visible and not

slyr.isGroupLayer]

Create a list of all possible vector layer names in the map that

could have a

corresponding service layer

vectorLayersNames = [vlyr.name for vlyr in

arcpy.mapping.ListLayers(mxd, data_frame=df)

 if not vlyr.isServiceLayer and not

vlyr.isGroupLayer]

Get a list of all vector layers that don't have a corresponding

service layer

removeLayerNameList = [vlyrName for vlyrName in vectorLayersNames

 if vlyrName not in serviceLayersNames]

Remove all vector layers that don't have a corresponding service

layer

for lyr in arcpy.mapping.ListLayers(mxd, data_frame=df):

 if not lyr.isGroupLayer \

 and not lyr.isServiceLayer \

 and lyr.name in removeLayerNameList \

 and lyr.name in vectorLayersNames:

 arcpy.mapping.RemoveLayer(df, lyr)

Remove all service layers

This will leave only vector layers that had corresponding service

layers

for slyr in arcpy.mapping.ListLayers(mxd, data_frame=df):

 if slyr.isServiceLayer:

 arcpy.mapping.RemoveLayer(df, slyr)

Use the uuid module to generate a GUID as part of the output name

This will ensure a unique output name

output = 'WebMap_{}.{}'.format(str(uuid.uuid1()), Format)

Output_File = os.path.join(arcpy.env.scratchFolder, output)

Export the web map

if Format.lower() == 'pdf':

 arcpy.mapping.ExportToPDF(mxd, Output_File)

elif Format.lower() == 'png':

 arcpy.mapping.ExportToPNG(mxd, Output_File)

Set the output parameter to be the output file of the server job

arcpy.SetParameterAsText(3, Output_File)

Clean up - delete the map document reference

filePath = mxd.filePath

del mxd, result

os.remove(filePath)

ConvertWebMapToMapDocument example 4

In this example, a staged template map document is used that contains vector

equivalents of all the possible service layers. After executing

the ConvertWebMapToMapDocument function, the script loops through all the

layers in the output map document, removing all layers except the vector layers

that correspond to the service layers in the web map JSON. The data view of the

output map document is then exported to PNG using the DPI, output height, and

output width values returned from the ConvertWebMapToMapDocument function,

as specified in the web app.

import arcpy

import os

import uuid

Input web map json

Web_Map_as_JSON = arcpy.GetParameterAsText(0)

The template location in the registered folder

templatePath = '//MyComputerName/MyDataStore/FederalLands'

Get the template map document

templateMxd = os.path.join(templatePath, 'FederalLands.mxd')

Convert the web map to a map document

result = arcpy.mapping.ConvertWebMapToMapDocument(Web_Map_as_JSON,

templateMxd)

mxd = result.mapDocument

Reference the data frame that contains the web map

Note: ConvertWebMapToMapDocument renames the active dataframe in the

template_mxd to "Webmap"

df = arcpy.mapping.ListDataFrames(mxd, 'Webmap')[0]

Get a list of all service layer names in the map

serviceLayersNames = [slyr.name for slyr in

arcpy.mapping.ListLayers(mxd, data_frame=df)

 if slyr.isServiceLayer and slyr.visible and not

slyr.isGroupLayer]

Create a list of all possible vector layer names in the map that

could have a

corresponding service layer
vectorLayersNames = [vlyr.name for vlyr in

arcpy.mapping.ListLayers(mxd, data_frame=df)

 if not vlyr.isServiceLayer and not

vlyr.isGroupLayer]

Get a list of all vector layers that don't have a corresponding

service layer

removeLayerNameList = [vlyrName for vlyrName in vectorLayersNames

 if vlyrName not in serviceLayersNames]

Remove all vector layers that don't have a corresponding service

layer

for lyr in arcpy.mapping.ListLayers(mxd, data_frame=df):

 if not lyr.isGroupLayer \

 and not lyr.isServiceLayer \

 and lyr.name in removeLayerNameList \

 and lyr.name in vectorLayersNames:

 arcpy.mapping.RemoveLayer(df, lyr)

Remove all service layers

This will leave only vector layers that had corresponding service

layers

for slyr in arcpy.mapping.ListLayers(mxd, data_frame=df):

 if slyr.isServiceLayer:

 arcpy.mapping.RemoveLayer(df, slyr)

Use the uuid module to generate a GUID as part of the output name

This will ensure a unique output name

output = 'WebMap_{}.png'.format(str(uuid.uuid1()))

Output_File = os.path.join(arcpy.env.scratchFolder, output)

Export the web map

arcpy.mapping.ExportToPNG(mxd, Output_File, df,

result.outputSizeWidth,

 result.outputSizeHeight, result.DPI)

Set the output parameter to be the output file of the server job

arcpy.SetParameterAsText(1, Output_File)

Clean up - delete the map document reference

filePath = mxd.filePath

del mxd, result

os.remove(filePath)

ConvertWebMapToMapDocument example 5

In this example, the user supplies a page range that corresponds to the Data

Driven Pages enabled in the template map document. The page range is then

exported to a multipage PDF document.

import arcpy

import os

import uuid

The template location in the registered folder

templatePath = '//MyComputerName/MyDataStore/WebMap'

Input WebMap json

Web_Map_as_JSON = arcpy.GetParameterAsText(0)

Data Driven Page numbers as comma delimited string

DDP_Pages = arcpy.GetParameterAsText(1)

if DDP_Pages == '#' or not DDP_Pages:

 DDP_Pages = "1, 3, 10-13"

Get the template map document

templateMxd = os.path.join(templatePath, 'DDP.mxd')

Convert the WebMap to a map document

result = arcpy.mapping.ConvertWebMapToMapDocument(Web_Map_as_JSON,

 templateMxd)

mxd = result.mapDocument

Use the uuid module to generate a GUID as part of the output name

This will ensure a unique output name

Output_Name = os.path.join(arcpy.env.scratchFolder,

 'WebMap_{}.pdf'.format(str(uuid.uuid1())))

Export the WebMap Data Driven Pages to PDF

mxd.dataDrivenPages.exportToPDF(Output_Name, "RANGE", DDP_Pages)

Set the output parameter to be the output PDF

arcpy.SetParameterAsText(2, Output_Name)

Clean up - delete the map document reference

filePath = mxd.filePath
del mxd, result

os.remove(filePath)

CreateGISServerConnectionFile (arcpy.mapping)
Top

Summary

This function creates a connection file that can be used to connect to a GIS

Server.

Discussion

This function creates a connection file that can be used to connect to ArcGIS for

Server or Spatial Data Server. The connection file can then be used to publish GIS

services. For example, the CreateGISServerConnectionFile can be used in

conjunction with CreateMapSDDraft, Stage Service, and Upload Service

Definition to completely automate the map publishing process.

Related functions:

CreateMapSDDraftCreateGPSDDraftCreateImageSDDraftCreateGeocodeSDDraft

Syntax

CreateGISServerConnectionFile (connection_type, out_folder_path,

out_name, server_url, server_type, {use_arcgis_desktop_staging_folder},

{staging_folder_path}, {username}, {password}, {save_username_password})

Parameter Explanation
Data

Type

connection_type
A string that represents the connection type. You

can create a connection to use, publish, or

administer GIS Services.

 USE_GIS_SERVICES —Use GIS Services.

 PUBLISH_GIS_SERVICES —Publish GIS
Services.

 ADMINISTER_GIS_SERVICES —Administer
GIS Services.

String

out_folder_path The folder path where the .ags file will be stored.

Entering a value of GIS Servers will put the

.ags file in the GIS Servers node in

the Catalog window.

String

out_name
The name of the .ags file. The output file

extension must end with .ags.

String

server_url
A string that represents the URL to the server.

String

server_type
A string that represents the type of server.

String

 ARCGIS_SERVER —ArcGIS for Server server
type

 SPATIAL_DATA_SERVER —A Spatial Data
Server server type

(The default value is ARCGIS_SERVER)

use_arcgis_desktop_staging_folder A Boolean that determines whether to

use ArcGIS for Desktop's staging folder. If set to

true, you do not have to enter a

staging_folder_path as ArcGIS for Desktop's

staging folder will be used. This parameter is

only used if the connection_type is

PUBLISH_GIS_SERVICES or

ADMINISTER_GIS_SERVICES.

(The default value is True)

Boolean

staging_folder_path A string that represents the staging folder path. If

you will be using this connection to create and

save service definitions, you can choose where

the service definition files will be staged on disk.

By default, they are staged in a folder on your

local machine. If this parameter is set to

None, ArcGIS for Desktop's staging folder will

be used. This parameter is only used if the

connection_type is PUBLISH_GIS_SERVICES

or ADMINISTER_GIS_SERVICES.

String

username
A string that represents the user name to the GIS

server.

String

password
A string that represents the password to the GIS

server.

String

save_username_password
A Boolean that represents whether the user name

and password to the GIS Server will be saved in

the connection file.

 SAVE_USERNAME — Save the user name
and password in the connection file.

 DO_NOT_SAVE_USERNAME — Do not save
the user name and password in the
connection file.

(The default value is True)

Boolean

http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000006q000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000006q000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v00000094000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v00000094000000.htm

Code Sample

CreateGISServerConnectionFile example 1

The following script creates an ArcGIS for Server administration connection file in

a user-defined folder.

import arcpy

outdir = 'C:/Project'

out_folder_path = outdir

out_name = 'test.ags'

server_url = 'http://MyServer:6080/arcgis/admin'

use_arcgis_desktop_staging_folder = False

staging_folder_path = outdir

username = 'admin'

password = 'admin'

arcpy.mapping.CreateGISServerConnectionFile("ADMINISTER_GIS_SERVICES",

 out_folder_path,

 out_name,

 server_url,

 "ARCGIS_SERVER",

use_arcgis_desktop_staging_folder,

 staging_folder_path,

 username,

 password,

 "SAVE_USERNAME")

CreateGISServerConnectionFile example 2

The following script creates an ArcGIS for Server user connection file in the GIS

Servers node in the Catalog window.

import arcpy

out_folder_path = 'GIS Servers'

out_name = 'test.ags'

server_url = 'http://MyServer:6080/arcgis/services'

arcpy.mapping.CreateGISServerConnectionFile("USE_GIS_SERVICES",

 out_folder_path,

 out_name,

 server_url,

 "ARCGIS_SERVER",

 username='admin',

 password='admin',

save_username_password=True)

CreateMapSDDraft (arcpy.mapping)
Top

Summary

Converts Map Document (.mxd) files to Service Definition Draft (.sddraft) files.

Discussion

CreateMapSDDraft is the first step to automating the publishing of a Map

Document to a GIS Server using ArcPy. The output created from

the CreateMapSDDraft is a Service Definition Draft (.sddraft) file. A Service

Definition Draft is the combination of a Map Document, information about the

server, and a set of service properties.

Information about the server includes the server connection or server type being

published to, the type of service being published, metadata for the service (Item

info), and data references (whether or not data is being copied to the server).

Service properties include whether the service supports caching and, if so, the

cache settings. Also included are any additional capabilities of the service, such as

Feature access or OGC capabilities, along with an appropriate property set for the

chosen capability. This method initially uses a set of default service properties.

Users can edit these properties using standard third-party XML editors. Moreover,

users can automate the modification of these properties using third-party XML

libraries such as the xml.dom.minidom standard Python library. See the Modify

SDDraft examples below.

Note:

A draft service definition does not contain data. A draft service alone cannot be

used to publish a service.

Similar to the AnalyzeForSD function, CreateMapSDDraft also returns a Python

dictionary containing errors and other potential issues that you should address

prior to creating your Service Definition file. For more information about the types

of errors, warnings and information messages, and how to access them,

see AnalyzeForSD .

A Service Definition Draft can be authored without knowing the specific server

connection information. In this case, the connection_file_path parameter

may be omitted; however, the server_type must be provided. A server

connection can be provided later when the Service Definition Draft is published

using the Upload Service Definition tool.

The Service Definition Draft can then be converted to a fully consolidated Service

Definition (.sd) file using the Stage Service tool. Staging compiles all the

necessary information needed to successfully publish the GIS resource. If your

data is not registered with the server, the data will be added when the Service

Definition Draft is staged. Finally, the Service Definition file can be uploaded and

published as a GIS service to a specified GIS server using theUpload Service

Definition tool. This step takes the Service Definition file, copies it onto the server,

extracts required information, and publishes the GIS resource. For more

information, see the overview of the Publishing toolset.

Once the .sddraft file has been staged and uploaded to the server, the tools

within the Caching toolset can be used to create the tiling scheme for services that

have caching enabled, such as the Create Map Server Cachetool. Moreover, the

tools within the Caching toolset can be used to modify caching and tiling

properties for services that have caching enabled. For example, the Manage Map

Server Cache Scales tool can be used to add new scales or delete existing scales

from a cache. Modify SDDraft example 7 demonstrates this. The tiling scheme can

also be modified by editing the .sddraft file using third-party XML libraries such

as the xml.dom.minidom standard Python library. However, due to the complexity

of the tiling scheme XML structure, it is recommended to use the Caching toolset

whenever possible.

When publishing hosted services to ArcGIS Online or Portal for ArcGIS, sign in

information is obtained from the File > Sign In dialog box on the ArcGIS for

Desktop main menu. Moreover, the Sign In To Portal tool can be used to specify

sign in information for some security configurations for Portal for ArcGIS. For more

information on hosted services and signing in to ArcGIS Online or Portal for

ArcGIS, see the following topics:

What are ArcGIS Online hosted services?Signing into ArcGIS Online in ArcGIS for

DesktopManaging portal connections from ArcGIS for Desktop

Note:

The ArcGIS for Server Administrator API also allows you to script common

actions you do with your server. For example, stop and start services, edit

properties of services, such as the maximum number of instances, grant and

revoke user permissions on services, and so on.

You can also create Service Definition Draft files for geoprocessing, image, and

geocoding services. See the following related functions:

CreateGPSDDraftCreateImageSDDraftCreateGeocodeSDDraft

http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001q000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/005400000003000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/005400000004000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000000n000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000000n000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001t000000.htm
http://resources.arcgis.com/en/help/main/10.2/01sr/01sr00000008000000.htm
http://resources.arcgis.com/en/help/main/10.2/01sr/01sr00000008000000.htm
http://resources.arcgis.com/en/help/main/10.2/00sp/00sp00000023000000.htm
http://resources.arcgis.com/en/help/main/10.2/00sp/00sp00000023000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000005p3000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v0000008z000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v0000008z000000.htm
http://resources.arcgis.com/en/help/main/10.2/018v/018v00000095000000.htm

Syntax

CreateMapSDDraft (map_document, out_sddraft, service_name, {server_type},

{connection_file_path}, {copy_data_to_server}, {folder_name}, {summary},

{tags})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_sddraft A string that represents the path and file name for the

output Service Definition Draft (.sddraft) file.

String

service_name
A string that represents the name of the service. This is

the name people will see and use to identify the service.

The name can only contain alphanumeric characters and

underscores. No spaces or special characters are allowed.

The name cannot be more than 120 characters in length.

String

server_type A string representing the server type. If

a connection_file_path parameter is not

supplied, then a server_type must be provided. If

a connection_file_path parameter is supplied,

then the server_type is taken from the connection

file. In this case, you can

choose FROM_CONNECTION_FILE or skip the

parameter entirely.

 ARCGIS_SERVER —ArcGIS for Server server type

 FROM_CONNECTION_FILE —Get
the server_type as specified in

the connection_file_path parameter

 SPATIAL_DATA_SERVER —Spatial Data Server server
type

 MY_HOSTED_SERVICES —My Hosted Services server
type for ArcGIS Online or Portal for ArcGIS

(The default value is ARCGIS_SERVER)

String

connection_file_pa

th

A string that represents the path and file name to

the ArcGIS for Server connection file (.ags).

When the server_type is set

to MY_HOSTED_SERVICES, connection_file_pa

th is not required.

String

copy_data_to_serv

er

A Boolean that indicates whether the data referenced in

the map document will be copied to the server or not.

Thecopy_data_to_server parameter is only used if

the server_type is ARCGIS_SERVER and

the connection_file_path isn't specified. If

the connection_file_path is specified, then the

server's registered data stores are used. For example, if

the data in the map_document is registered with the

server, then copy_data_to_server will always

Boolean

be False. Conversely, if the data in

the map_document is not registered with the server,

then copy_data_to_server will always be True.

When the server_type is set

to SPATIAL_DATA_SERVER, copy_data_to_serv

er will always be False. Spatial Data Server services

always use registered data and will therefore never copy

data to the server.

When the server_type is set

to MY_HOSTED_SERVICES, copy_data_to_serve

r will always be True. My Hosted Maps services

always copy data to the server.

(The default value is False)

folder_name
A string that represents a folder name to which you want

to publish the service definition. If the folder does not

currently exist, it will be created. The default folder is the

server root level.

(The default value is None)

String

summary
A string that represents the Item Description Summary.

By default, the Summary from the ArcMap Map

Properties dialog box or Catalog window Item

Description dialog box for themap_document will be

used. Use this parameter to override the user interface

summary, or to provide a summary if one does not exist.

The summary provided here will not be persisted in the

map document.

(The default value is None)

String

tags
A string that represents the Item Description Tags.

By default, the Tags from the ArcMap Map

Properties dialog box or Catalog window Item

Description dialog box for themap_document will be

used. Use this parameter to override the user interface

tags, or to provide tags if they do not exist. The tags

provided here will not be persisted in the map document.

(The default value is None)

String

Return Value

Data Type Explanation

Dictionary
Returns a Python Dictionary of information messages, warnings, and errors.

http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000000n000000.htm

Code Sample

CreateMapSDDraft example 1

The following script demonstrates the complete publishing of map services

using arcpy.mapping workflow. Automating the publishing of map services can

be accomplished by using a combination of arcpy.mapping functions and the

geoprocessing tools in the Publishing toolset. The workflow begins with a map

document that you want to publish. First, use

the arcpy.mapping function CreateMapSDDraft to create a service definition

draft. Note that the Item Description, Summary, and Tags for the input map

document are overwritten using the summary and tags parameters. Next, you

should analyze the service definition draft for issues that could prevent you from

publishing successfully. After analyzing the service definition draft and addressing

serious issues, it is time to stage the service definition. Staging takes the service

definition draft and consolidates all the information needed to publish the service

into a complete service definition. Use the Stage Service geoprocessing tool to

stage the service definition. Finally, use the Upload Service

Definition geoprocessing tool to upload the service definition to the server and

publish the map service.

import arcpy

define local variables

wrkspc = 'C:/Project/'

mapDoc = arcpy.mapping.MapDocument(wrkspc + 'counties.mxd')

con = 'GIS Servers/arcgis on MyServer_6080 (publisher).ags'

service = 'Counties'

sddraft = wrkspc + service + '.sddraft'

sd = wrkspc + service + '.sd'

summary = 'Population Density by County'

tags = 'county, counties, population, density, census'

create service definition draft

analysis = arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'ARCGIS_SERVER',

 con, True, None, summary,

tags)

stage and upload the service if the sddraft analysis did not contain

errors

if analysis['errors'] == {}:

 # Execute StageService

 arcpy.StageService_server(sddraft, sd)
 # Execute UploadServiceDefinition

 arcpy.UploadServiceDefinition_server(sd, con)

else:

 # if the sddraft analysis contained errors, display them

 print analysis['errors']

CreateMapSDDraft example 2

The following sample script creates a Service Definition Draft (.sddraft) file from

a Map Document (.mxd). It then prints the Python Dictionary of errors, warnings,

and information, which is returned from theCreateMapSDDraft function. The

analysis information contained in the Python dictionary helps to identify potential

performance bottlenecks and map errors that you may need to address before you

can create a Service Definition (.sd) file. This script also demonstrates how to

create a Service Definition Draft without specifying the server connection

information.

import arcpy

mapDoc = arcpy.mapping.MapDocument('C:/Project/counties.mxd')

service = 'Counties'

sddraft = 'C:/Project/' + service + '.sddraft'

analysis = arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'ARCGIS_SERVER')

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name

http://resources.arcgis.com/en/help/main/10.2/0154/0154000003v5000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm

CreateMapSDDraft example 3

The following sample script creates a Service Definition Draft (.sddraft) file from

a Map Document (.mxd) for My Hosted Services. If the service definition draft

contains no analysis errors, it is staged using the Stage Servicegeoprocessing

tool. Then the Upload Service Definition geoprocessing tool is used to upload the

service definition to ArcGIS Online or Portal for ArcGIS. ArcGIS Online sign in

information is obtained from the File > Sign In dialog box on the ArcGIS for

Desktop main menu.

import arcpy

mapDoc = arcpy.mapping.MapDocument('C:/Project/counties.mxd')

service = 'Counties'

sddraft = 'C:/Project/{}.sddraft'.format(service)

sd = 'C:/Project/{}.sd'.format(service)

create service definition draft

analysis = arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'MY_HOSTED_SERVICES')

stage and upload the service if the sddraft analysis did not contain

errors

if analysis['errors'] == {}:

 # create service definition

 arcpy.StageService_server(sddraft, sd)

 # publish to My Hosted Services

 arcpy.UploadServiceDefinition_server(sd, 'My Hosted Services')

else:

 # if the sddraft analysis contained errors, display them

 print analysis['errors']

Modify SDDraft example 1

The following script modifies the Item Information Description element using the

xml.dom.minidom standard Python library. The modified Service Definition Draft

(.sddraft) file is then saved to a new file. Finally, the new.sddraft file is

analyzed for errors using the AnalyzeForSD function.

import arcpy

import xml.dom.minidom as DOM

the new description

newDesc = 'US Counties Map'

xml = r"C:\Project\Counties.sddraft"

doc = DOM.parse(xml)

find the Item Information Description element

descriptions = doc.getElementsByTagName('Description')

for desc in descriptions:

 if desc.parentNode.tagName == 'ItemInfo':

 # modify the Description

 if desc.hasChildNodes():

 desc.firstChild.data = newDesc

 else:

 txt = doc.createTextNode(newDesc)

 desc.appendChild(txt)

output to a new sddraft

outXml = r"C:\Project\Output\CountiesForWeb.sddraft"

f = open(outXml, 'w')

doc.writexml(f)

f.close()

analyze the new sddraft for errors

analysis = arcpy.mapping.AnalyzeForSD(outXml)

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

http://resources.arcgis.com/en/help/main/10.2/01sr/01sr00000008000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00sp/00sp00000023000000.htm
http://resources.arcgis.com/en/help/main/10.2/00sp/00sp00000023000000.htm

Modify SDDraft example 2

The following script modifies the Staging Settings TextAntialiasingMode element

using the xml.dom.minidom standard Python library. The modified Service

Definition Draft (.sddraft) file is then saved to a new file. Finally, the

new .sddraft file is analyzed for errors using the AnalyzeForSD function.

import arcpy

import xml.dom.minidom as DOM

the new TextAntiAliasingMode value

newTextAntialiasingMode = 'Normal'

xml = r"C:\Project\Counties.sddraft"

doc = DOM.parse(xml)

keys = doc.getElementsByTagName('Key')

for key in keys:

 if key.hasChildNodes():

 if key.firstChild.data == 'textAntialiasingMode':

 # modify the TextAntiAliasingMode value

 key.nextSibling.firstChild.data = newTextAntialiasingMode

output to a new sddraft

outXml = r"C:\Project\Output\CountiesForWeb.sddraft"

f = open(outXml, 'w')

doc.writexml(f)

f.close()

analyze the new sddraft for errors

analysis = arcpy.mapping.AnalyzeForSD(outXml)

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

Modify SDDraft example 3

The following sample script creates a Service Definition Draft (.sddraft) file from

a Map Document (.mxd). It then enables WMSServer capabilities and sets the

Title property by modifying the .sddraft file using the xml.dom.minidom

standard Python library. The modified .sddraft file is then saved to a new file.

Finally, the new .sddraft file is analyzed for errors using

the AnalyzeForSD function.

import arcpy

import xml.dom.minidom as DOM

Reference map document for CreateSDDraft function.

mapDoc = arcpy.mapping.MapDocument('C:/project/counties.mxd')

Create service and sddraft variables for CreateSDDraft function.

service = 'Counties'

sddraft = 'C:/Project/' + service + r'.sddraft'

Create sddraft.

arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'ARCGIS_SERVER')

These are the properties we will change in the sddraft xml.

soe = 'WMSServer'

soeProperty = 'title'

soePropertyValue = 'USACounties'

Read the sddraft xml.

doc = DOM.parse(sddraft)

Find all elements named TypeName. This is where the server object

extension (SOE) names are defined.

typeNames = doc.getElementsByTagName('TypeName')

for typeName in typeNames:

 # Get the TypeName whose properties we want to modify.

 if typeName.firstChild.data == soe:

 extension = typeName.parentNode

 for extElement in extension.childNodes:

 # Enabled SOE.

 if extElement.tagName == 'Enabled':

 extElement.firstChild.data = 'true'

 # Modify SOE property. We have to drill down to the

relevant property.
 if extElement.tagName == 'Props':

 for propArray in extElement.childNodes:

 for propSet in propArray.childNodes:

 for prop in propSet.childNodes:

 if prop.tagName == "Key":

 if prop.firstChild.data ==

soeProperty:

 if

prop.nextSibling.hasChildNodes():

prop.nextSibling.firstChild.data = soePropertyValue

 else:

 txt =

doc.createTextNode(soePropertyValue)

prop.nextSibling.appendChild(txt)

Output to a new sddraft.

outXml = "C:/Project/Output/CountiesForWeb.sddraft"

f = open(outXml, 'w')

doc.writexml(f)

f.close()

Analyze the new sddraft for errors.

analysis = arcpy.mapping.AnalyzeForSD(outXml)

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

Modify SDDraft example 4

The following sample script creates a Service Definition Draft (.sddraft) file from

a Map Document (.mxd). It then disables KmlServer capabilities by modifying

the .sddraft file using the xml.dom.minidom standard Python library. The

modified .sddraft file is then saved to a new file. Finally, the new .sddraft file

is analyzed for errors using the AnalyzeForSD function.

import arcpy

import xml.dom.minidom as DOM

Reference map document for CreateSDDraft function.

mapDoc = arcpy.mapping.MapDocument('C:/project/counties.mxd')

Create service and sddraft variables for CreateSDDraft function.

service = 'Counties'

sddraft = 'C:/Project/' + service + '.sddraft'

Create sddraft.

arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'ARCGIS_SERVER')

The Server Object Extension (SOE) to disable.

soe = 'KmlServer'

Read the sddraft xml.

doc = DOM.parse(sddraft)

Find all elements named TypeName. This is where the server object

extension (SOE) names are defined.

typeNames = doc.getElementsByTagName('TypeName')

for typeName in typeNames:

 # Get the TypeName we want to disable.

 if typeName.firstChild.data == soe:

 extension = typeName.parentNode

 for extElement in extension.childNodes:

 # Disabled SOE.

 if extElement.tagName == 'Enabled':

 extElement.firstChild.data = 'false'

Output to a new sddraft.

outXml = "C:/Project/Output/CountiesForWeb.sddraft"

f = open(outXml, 'w')
doc.writexml(f)

f.close()

Analyze the new sddraft for errors.

analysis = arcpy.mapping.AnalyzeForSD(outXml)

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

Modify SDDraft example 5

The following sample script creates a Service Definition Draft (.sddraft) file for

the Spatial Data Server server_type from a Map Document (.mxd). It then

changes the service's default web capabilities by modifying the.sddraft file

using the xml.dom.minidom standard Python library. The modified .sddraft file

is then saved to a new file. Finally, the new .sddraft file is analyzed for errors

using the AnalyzeForSD function.

import arcpy

import xml.dom.minidom as DOM

Reference map document for CreateSDDraft function.

mapDoc = arcpy.mapping.MapDocument('C:/project/SDS.mxd')

Create service and sddraft variables for CreateSDDraft function.

service = 'CountiesSDS'

sddraft = 'C:/Project/{}.sddraft'.format(service)

Create sddraft.

arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'SPATIAL_DATA_SERVER')

Read the sddraft xml.

doc = DOM.parse(sddraft)

Get all the value tags.

values = doc.getElementsByTagName('Value')

for value in values:

 if value.hasChildNodes():

 # Change the default WebCapabilities from

'Query,Create,Update,Delete,Uploads,Editing' to just 'Query'.

 if value.firstChild.data ==

'Query,Create,Update,Delete,Uploads,Editing':

 value.firstChild.data = 'Query'

Output to a new sddraft.

outXml = "C:/Project/Output/CountiesForSDS.sddraft"

f = open(outXml, 'w')

doc.writexml(f)

f.close()

Analyze the new sddraft for errors.
analysis = arcpy.mapping.AnalyzeForSD(outXml)

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

Modify SDDraft example 6

The following sample script creates a Service Definition Draft (.sddraft) file for

the ARCGIS_SERVER server_type from a Map Document (.mxd). It then

enables caching on the service by modifying the .sddraft file using the

xml.dom.minidom standard Python library. The modified .sddraft file is then

saved to a new file. Finally, the new .sddraft file is analyzed for errors using

the AnalyzeForSD function.

import arcpy

import xml.dom.minidom as DOM

import os

define local variables

wrkspc = 'C:/Project/'

mapDoc = arcpy.mapping.MapDocument(wrkspc + 'counties.mxd')

con = 'GIS Servers\arcgis on MyServer_6080 (admin).ags'

service = 'Counties'

sddraft = wrkspc + service + '.sddraft'

sd = os.path.join(wrkspc, "output", service + '.sd')

create sddraft

if os.path.exists(sddraft): os.remove(sddraft)

arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'ARCGIS_SERVER')

read sddraft xml

doc = DOM.parse(sddraft)

turn on caching in the configuration properties

configProps = doc.getElementsByTagName('ConfigurationProperties')[0]

propArray = configProps.firstChild

propSets = propArray.childNodes

for propSet in propSets:

 keyValues = propSet.childNodes

 for keyValue in keyValues:

 if keyValue.tagName == 'Key':

 if keyValue.firstChild.data == "isCached":

 # turn on caching

 keyValue.nextSibling.firstChild.data = "true"

output to a new sddraft
outXml = "C:\Project\Output\CountiesForWeb.sddraft"

if os.path.exists(outXml): os.remove(outXml)

f = open(outXml, 'w')

doc.writexml(f)

f.close()

analyze new sddraft for errors

analysis = arcpy.mapping.AnalyzeForSD(outXml)

print dictionary of messages, warnings and errors

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

del f, doc, mapDoc

Modify SDDraft example 7

The following sample script creates a Service Definition Draft (.sddraft) file for

the ARCGIS_SERVER server_type from a Map Document (.mxd). It then

enables caching on the service by modifying the .sddraft file using the

xml.dom.minidom standard Python library. The modified .sddraft file is then

saved to a new file. Next, the new .sddraft file is analyzed for errors using

the AnalyzeForSD function. After analyzing the service definition draft, it is time to

stage the service definition. Use the Stage Service geoprocessing tool to stage the

service definition. Then use the Upload Service Definition geoprocessing tool to

upload the service definition to the server and publish the map service. Once the

service has been published, the script then calls the Manage Map Server Cache

Scales geoprocessing tool which updates the scale levels in an existing cached

map or image service. Use this tool to add new scales or delete existing scales

from a cache. Finally, the script calls the Manage Map Server Cache

Tiles geoprocessing tool to create map service cache tiles.

import arcpy

import xml.dom.minidom as DOM

import os

define local variables

wrkspc = 'C:/Project'

systemFolder =

'C:/Users/<username>/AppData/Roaming/ESRI/Desktop10.2/ArcCatalog'

server = 'arcgis on MyServer_6080 (publisher)'

service = 'Counties'

build paths to data

mapDoc = arcpy.mapping.MapDocument(os.path.join(wrkspc,

'counties.mxd'))

connection = os.path.join(systemFolder, server + '.ags')

mapServer = os.path.join(systemFolder, server, service + '.MapServer')

sddraft = os.path.join(wrkspc, service + '.sddraft')

sd = os.path.join(wrkspc, 'output', service + '.sd')

create sddraft

if os.path.exists(sddraft): os.remove(sddraft)

arcpy.mapping.CreateMapSDDraft(mapDoc, sddraft, service,

'ARCGIS_SERVER')

read sddraft xml
doc = DOM.parse(sddraft)

turn on caching in the configuration properties

configProps = doc.getElementsByTagName('ConfigurationProperties')[0]

propArray = configProps.firstChild

propSets = propArray.childNodes

for propSet in propSets:

 keyValues = propSet.childNodes

 for keyValue in keyValues:

 if keyValue.tagName == 'Key':

 if keyValue.firstChild.data == "isCached":

 # turn on caching

 keyValue.nextSibling.firstChild.data = "true"

output to a new sddraft

outXml = os.path.join(wrkspc, 'output', service + '.sddraft')

if os.path.exists(outXml): os.remove(outXml)

f = open(outXml, 'w')

doc.writexml(f)

f.close()

analyze new sddraft for errors

analysis = arcpy.mapping.AnalyzeForSD(outXml)

print dictionary of messages, warnings and errors

for key in ('messages', 'warnings', 'errors'):

 print "----" + key.upper() + "---"

 vars = analysis[key]

 for ((message, code), layerlist) in vars.iteritems():

 print " ", message, " (CODE %i)" % code

 print " applies to:",

 for layer in layerlist:

 print layer.name,

 print

stage and upload the service if the sddraft analysis did not contain

errors

if analysis['errors'] == {}:

 # Execute StageService

http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000000n000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000000n000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000000p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000000p000000.htm

 if os.path.exists(sd): os.remove(sd)

 arcpy.StageService_server(outXml, sd)

 # Execute UploadServiceDefinition

 print "Uploading Service Definition..."

 arcpy.UploadServiceDefinition_server(sd, connection)

 # Print messaging from UploadServiceDefinition

 x = 0

 while x < arcpy.GetMessageCount():

 arcpy.AddReturnMessage(x)

 x = x + 1

else:

 print "{} contained errors. StageService and

UploadServiceDefinition aborted.".format(sddraft)

 exit()

print "Updating cache scales..."

scaleValues =

"100000000;10000000;5000000;1000000;500000;250000;125000;64000;5250"

arcpy.ManageMapServerCacheScales_server(mapServer, scaleValues)

print "Creating tiles..."

arcpy.ManageMapServerCacheTiles_server(mapServer, "100000000",

"RECREATE_ALL_TILES", "3")

print "Uploaded service and created tiles."

Modify SDDraft example 8

The following sample script shows how to update an existing feature service that

is hosted on ArcGIS Online. For example, an organization may want to push

updates to keep synchronized with the daily changes made by itsArcGIS for

Desktop users. This sample script will demonstrate how to:

 Turn a map document into an .sddraft file.

 Modify the XML inside with the appropriate settings.

 Analyze the .sddraft file for errors.

 Stage the .sddraft file into an .sd (service definition) file.

 Upload the service to ArcGIS Online. Note that this code shares the feature

service with everyone on ArcGIS Online.

Update the variables with your path to the MXD file. The script will create

temporary drafts in the same location in which the script is saved. ArcGIS Online

sign in information is obtained from the File > Sign In dialog box on theArcGIS for

Desktop main menu.

import arcpy, os, sys

import xml.dom.minidom as DOM

arcpy.env.overwriteOutput = True

Update these variables

The tempPath variable is a relative path which is the same directory

this script is saved to. You can modify this value to a path on your

system to hold the temporary files.

serviceName = "importantPoints"

tempPath = sys.path[0]

path2MXD = r"C:\path2MXD\pts.mxd"

All paths are built by joining names to the tempPath

SDdraft = os.path.join(tempPath, "tempdraft.sddraft")

newSDdraft = os.path.join(tempPath, "updatedDraft.sddraft")

SD = os.path.join(tempPath, serviceName + ".sd")

mxd = arcpy.mapping.MapDocument(path2MXD)

arcpy.mapping.CreateMapSDDraft(mxd, SDdraft, serviceName,

"MY_HOSTED_SERVICES")

Read the contents of the original SDDraft into an xml parser

doc = DOM.parse(SDdraft)

The follow 5 code pieces modify the SDDraft from a new MapService

with caching capabilities to a FeatureService with Query,Create,

Update,Delete,Uploads,Editing capabilities. The first two code

pieces handle overwriting an existing service. The last three pieces

change Map to Feature Service, disable caching and set appropriate

capabilities. You can customize the capabilities by removing items.

Note you cannot disable Query from a Feature Service.

tagsType = doc.getElementsByTagName('Type')

for tagType in tagsType:

 if tagType.parentNode.tagName == 'SVCManifest':

 if tagType.hasChildNodes():

 tagType.firstChild.data =

"esriServiceDefinitionType_Replacement"

tagsState = doc.getElementsByTagName('State')

for tagState in tagsState:

 if tagState.parentNode.tagName == 'SVCManifest':

 if tagState.hasChildNodes():

 tagState.firstChild.data = "esriSDState_Published"

Change service type from map service to feature service

typeNames = doc.getElementsByTagName('TypeName')

for typeName in typeNames:

 if typeName.firstChild.data == "MapServer":

 typeName.firstChild.data = "FeatureServer"

Turn off caching

configProps = doc.getElementsByTagName('ConfigurationProperties')[0]

propArray = configProps.firstChild

propSets = propArray.childNodes

for propSet in propSets:

 keyValues = propSet.childNodes

 for keyValue in keyValues:

 if keyValue.tagName == 'Key':

 if keyValue.firstChild.data == "isCached":

 keyValue.nextSibling.firstChild.data = "false"

Turn on feature access capabilities

configProps = doc.getElementsByTagName('Info')[0]

http://resources.arcgis.com/en/help/main/10.2/0154/0154000002w8000000.htm
http://resources.arcgis.com/en/help/main/10.2/01sr/01sr00000008000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000006p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00sp/00sp00000023000000.htm
http://resources.arcgis.com/en/help/main/10.2/00sp/00sp00000023000000.htm

propArray = configProps.firstChild

propSets = propArray.childNodes

for propSet in propSets:

 keyValues = propSet.childNodes

 for keyValue in keyValues:

 if keyValue.tagName == 'Key':

 if keyValue.firstChild.data == "WebCapabilities":

 keyValue.nextSibling.firstChild.data =

"Query,Create,Update,Delete,Uploads,Editing"

Write the new draft to disk

f = open(newSDdraft, 'w')

doc.writexml(f)

f.close()

Analyze the service

analysis = arcpy.mapping.AnalyzeForSD(newSDdraft)

if analysis['errors'] == {}:

 # Stage the service

 arcpy.StageService_server(newSDdraft, SD)

 # Upload the service. The OVERRIDE_DEFINITION parameter allows you

to override the

 # sharing properties set in the service definition with new

values. In this case,

 # the feature service will be shared to everyone on ArcGIS.com by

specifying the

 # SHARE_ONLINE and PUBLIC parameters. Optionally you can share to

specific groups

 # using the last parameter, in_groups.

 arcpy.UploadServiceDefinition_server(SD, "My Hosted Services",

serviceName,

 "", "", "", "",

"OVERRIDE_DEFINITION", "SHARE_ONLINE",

 "PUBLIC",

"SHARE_ORGANIZATION", "")

 print "Uploaded and overwrote service"

else:
 # If the sddraft analysis contained errors, display them and quit.

 print analysis['errors']

DeleteMapService (arcpy.mapping)
Top

Summary

Legacy:

This method has been deprecated starting at ArcGIS 10.1 and will return a

runtime error. Please consult the ArcGIS documentation for the usage of the

new ArcGIS for Server Administrator API.

Deletes a map service from a designated ArcGIS for Server.

Discussion

This method has been deprecated at ArcGIS 10.1 and will return a runtime error.

Starting at version 10.1, ArcGIS for Server has a new architecture which may

require you to adjust how you work with the server. See the following help topics

for more information: What to expect when migrating to ArcGIS 10.2 for

Server and Migration to ArcGIS 10.2 for Server.

You can delete Map Services using the ArcGIS for Server Administrator API which

is available through the ArcGIS Site Directory. The default URL of the ArcGIS for

Server Site Directory is as follows:

http://<server name>:6080/arcgis/admin

Note:

The URL of the Site Directory may vary if you have configured ArcGIS for

Server Web Adaptor to work with your site. For example, the inclusion of the port

number, 6080, may not be required. Check your web adaptor configuration to

obtain the correct URL.

An example of using Python and the ArcGIS for Server Administrator API to delete

Map Services is below:

import json

import urllib

import urllib2

def gentoken(url, username, password, expiration=60):

 query_dict = {'username': username,

 'password': password,

 'expiration': str(expiration),

 'client': 'requestip'}

 query_string = urllib.urlencode(query_dict)

 return json.loads(urllib.urlopen(url + "?f=json",

query_string).read())['token']

def deleteservice(server, servicename, username, password, token=None,

port=6080):

 if token is None:

 token_url =

"http://{}:{}/arcgis/admin/generateToken".format(server, port)

 token = gentoken(token_url, username, password)

 delete_service_url =

"http://{}:{}/arcgis/admin/services/{}/delete?token={}".format(server,

port, servicename, token)

 urllib2.urlopen(delete_service_url, ' ').read() # The ' ' forces

POST

if you need a token, execute this line:

deleteservice("<server>", "<service>.MapServer", "<admin username>",

"<admin password>")

if you already have a token, execute this line:

deleteservice("<server>", "<service>.MapServer", None, None,

token='<token string>')

http://resources.arcgis.com/en/help/main/10.2/0154/0154000005p3000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002p0000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000005p3000000.htm

Syntax

DeleteMapService (connection_url_or_name, server, service_name,

{folder_name}, {connection_username}, {connection_password},

{connection_domain})

Parameter Explanation
Data

Type

connection_url_or_name A string that represents the URL of the ArcGIS for Server for

which you want to delete a service.
String

server A string that represents the ArcGIS for Server host name. String

service_name
A string that represents the name of the service. This is the

name people will see and use to identify the service. The

name can only contain alphanumeric characters and

underscores. No spaces or special characters are allowed. The

name cannot be more than 120 characters in length.

String

folder_name
A string that represents a folder name.

String

connection_username A string that represents a user name used to connect

to ArcGIS for Server. This variable is only necessary when

connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

connection_password A string that represents a password used to connect to

the ArcGIS for Server. This variable is only necessary when

connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

connection_domain A string that represents a domain name used to connect to

the ArcGIS for Server. This variable is only necessary when

connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

ExportReport (arcpy.mapping)
Top

Summary

Exports a formatted, tabular report using data from layers or stand-alone tables in

a map document along with the report template information that is provided in a

report layout file (.rlf).

Discussion

The ExportReport function provides a mechanism to automate the generation

of reports that are originally authored in a map document (.mxd) using the

reporting tools available in ArcMap. A report layout file authored in ArcMap is a

template that stores information about the content and placement of the items in a

report. The report layout file is used along with the source data in a map document

to create output reports. The source data can also have associated joins and

related table information that is used within the report.

Note:

The ExportReport function has a dependency on the ArcMap installation.

Therefore, ExportReport can only be executed on machines that have ArcMap

installed. ExportReport will not run using stand-alone installations of ArcGIS

Engine or ArcGIS for Server. Moreover, ExportReport will not work as a

Geoprocessing Service.

The source data must exist in a map document (.mxd) or layer file (.lyr), and the

dataset field names must match those in the report layout file in order

for ExportReport to execute properly. A report layout file can be used with

different data sources provided that the data source has the same dataset field

names. If the data is similar but the data source field names are different, then

the field_map parameter can be used to remap the report layout file fields to

different field names in the source dataset.

There are numerous elements authored in a report layout file within ArcMap that

are not directly exposed through the ExportReport function. It may be

necessary to author a collection of specific templates for generating and exporting

different report scenarios.

The reporting tools in the ArcMap user interface have a button called Dataset

options. This allows the author to choose only one of four ways in which records

will be processed: All, Selected Set, Visible Extent, and Definition Query.

The dataset_option parameter serves this same purpose and takes a

keyword. A dataset_option of ALL or SELECTED will simply process the

appropriate records. If the dataset_option is set toDEFINITION_QUERY, then

a valid string needs to be provided for

the report_definition_query parameter. If the dataset_option is set

to EXTENT, then a valid Extent object needs to be provided for

the extentparameter.

Similar to the user interface, it is only possible to use

one dataset_option keyword at a time. For example, in the user interface, it is

not possible to process only the selected set of records and only those in the

visible extent. The same rule applies to the ExportReport function; only one

parameter can be set at a time. If more than one of these parameters is set, they

will overwrite each other. However, standard ArcPy attribute and/or spatial query

functions can be combined together and coupled with a value of SELECTED for

the dataset_option parameter to generate the final, desired report. An

example is provided below.

The page_range parameter allows you to generate a report for only a subset of

pages. This can be a continuous group of pages (5-12) or even a discontinuous

set of pages (3,7). In these cases, when you generate a report and

the starting_page_number is set to 1, the printed page numbers will match

what you've entered (Page 3, Page 7). This was designed for scenarios where

only a selected number of pages will be reprinted and inserted into already

existing reports. If the scenario requires that the output page numbers be

continuous, for example (Page 1, Page 2), then you must set

the starting_page_number to equal the page number of interest, and set

the page_range to be a single page. This means that ExportReport will need

to be executed once for each page. For example, once

with starting_page_number = 3, page_range="3" and again

withstarting_page_number = 7, page_range="7".

The field_map parameter is only needed if the dataset field names are different

between the source_data and the field names used to build the report layout

file. When creating the field_map, only the fields used in the report need to be

added to the dictionary. If fields are dropped from the field map dictionary, those

fields will be dropped from the report. The mapped fields must have identical data

types, and the field names in the field_mapare case sensitive.

It is possible to use arcpy.mapping to build reports so you can put a map in your

report. Pictures in a report have a property called Source Image. Arcpy.mapping

does not have access to this value but if the source image value is pointing to a

path on disk, arcpy.mapping can update the file on disk using an export operation

and the report engine will use whatever image is currently available. In a Data

Driven Pages example, you could change the picture based on the current extent,

for example, with arcpy.mapping before calling the next page. An example is

provided below.

For more information about reporting in ArcGIS, see the following introductory

topics:

 What are reports in ArcGIS

 Creating a report

http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/004v/004v00000001000000.htm
http://resources.arcgis.com/en/help/main/10.2/004v/004v00000002000000.htm

Syntax

ExportReport (report_source, report_layout_file, output_file, {dataset_option},

{report_title}, {starting_page_number}, {page_range},

{report_definition_query}, {extent}, {field_map})

Parameter Explanation
Data

Type

report_source A reference to a Layer or TableView object. Object

report_layout_file A string that represents the path and file name of the report

layout file (.rlf).

String

output_file A string that represents the path and file name of the output

file. The specified file extension controls the output format.

The following extensions/formats are supported: .htm,
.html, .pdf, .rtf, .tif, .tiff, .txt,

and .xls.

String

dataset_option A keyword that specifies which dataset rows will be

processed in the output report. This value will override

the Dataset Optionsvalue stored in the report layout file

which is found in the Report Properties dialog box. If

the dataset_option parameter is not set, it will default

to the value stored in the report layout file. If

the dataset_option is set to DEFINITION_QUERY,

then a valid string needs to be provided for

the report_definition_query parameter. If

the dataset_option is set to EXTENT, then a

valid Extent object needs to be provided for

the extent parameter. Because

the dataset_option keyword controls which additional

parameter to use, only one of these parameters can be set at

a time, just like in the user interface.

 ALL —Override the report layout file dataset option and
process all data source records.

 DEFINITION_QUERY —Override the report layout file
dataset option and provide a new or updated definition
query.

 EXTENT —Override the report layout file dataset option
and provide a new or updated extent.

 SELECTED —Override the report layout file dataset
option and process only the selected records.

 USE_RLF —Use the settings saved in the report layout
file.

(The default value is USE_RLF)

String

report_title
A string that represents the report's title which appears in the

report layout file header section.

String

starting_page_number
A number that represents the printed page number for the

first page of the output report. This value is useful for

offsetting page numbers for reports that get appended to the

end of existing documents.

(The default value is 1)

Long

page_range A string that identifies the report pages to be exported to file

(for example, 1, 3, 5–12).

String

report_definition_que

ry

A string that represents a valid definition query that controls

which rows will be exported to the output report. This

parameter can only be set if

the dataset_option parameter is set

to DEFINITION_QUERY.This value will overwrite any

settings stored in the report layout file. If

the report_source layer or table has an existing

definition query, then

the report_definition_query will be applied to the

existing subset of records.

String

extent A geoprocessing Extent object. This parameter can only be

set if the dataset_option parameter is set to EXTENT.

When anextent object is passed into this parameter, the

rows will be based on those features that intersect the extent.

Extent

field_map
This parameter allows you to use a report layout file with a

data source that has similar data types but different field

names. A dictionary of mapped field names is used to remap

the fields used in the report layout file with the new fields in

the data source.

The following shows an example of

the field_map dictionary structure:

field_map={'rlf_field1':'data_source_field

1', 'rlf_field2':'data_source_field2'}

Dictionar

y

http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm

Code Sample

ExportReport example 1

The following script will export a report to a PDF file using the layer's selected

features in the map document. Because other optional parameters are being

skipped, the extent parameter name is explicitly entered.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

lyr = arcpy.mapping.ListLayers(mxd, "Accidents", df)[0]

arcpy.mapping.ExportReport(lyr,

 r"C:\Project\Project.rlf",

 r"C:\Project\Output\ProjectReport.pdf",

 "EXTENT",

 extent=df.extent)

del mxd

ExportReport example 2

The following script extends the example above to demonstrate how to combine a

spatial selection and an attribute selection to generate the desired report. This is

required because only one dataset_option can be used at a time. The results

are combined into a single selection and uses a value of SELECTED for

the dataset_option parameter.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

lyr = arcpy.mapping.ListLayers(mxd, "Accidents", df)[0]

#The DataFrame extent object is converted into a polygon feature so it

can be used with the SelectLayerByLocation function.

dfAsFeature = arcpy.Polygon(arcpy.Array([df.extent.lowerLeft,

df.extent.lowerRight, df.extent.upperRight, df.extent.upperLeft]),

 df.spatialReference)

arcpy.SelectLayerByLocation_management(lyr, "INTERSECT", dfAsFeature,

"", "NEW_SELECTION")

arcpy.SelectLayerByAttribute_management(lyr, "SUBSET_SELECTION",

"\"Accidents\" > 3")

arcpy.mapping.ExportReport(lyr,

 r"C:\Project\Project.rlf",

 r"C:\Project\Output\ProjectReport.pdf",

 "SELECTED")

del mxd

ExportReport example 3

The following script uses an existing report layout file against a different dataset

with different field names. A new title is used to overwrite the report layout file's

title and the fields are remapped using the field_map parameter.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

lyr = arcpy.mapping.ListLayers(mxd, "Traffic Lights", df)[0]

arcpy.mapping.ExportReport(lyr,

 r"C:\Project\Project.rlf",

 r"C:\Project\Output\ProjectReport.pdf",

 report_title="Traffic Light Coordinates",

field_map={'Accidents':'LightID','X':'Longitude','Y':'Latitude'})

del mxd

ExportReport example 4

The following script demonstrates how to insert a map into a report. A multipage

report will be generated. Each page has a large picture that displays the current

data frame extent and a report that provides information about the features within

the extent. After each data frame extent is changed, the data frame is exported to

a .emf file, and ExportReport is used to create a single PDF. All pages are

combined into a single, final PDF.

import arcpy, os

path = os.getcwd() #a relative path allowing for easy packaging

#Create PDF and remove if it already exists

pdfPath = path + r"\States_SubRegions.pdf"

if os.path.exists(pdfPath):

 os.remove(pdfPath)

pdfDoc = arcpy.mapping.PDFDocumentCreate(pdfPath)

subRegionList = ["East North Central", "East South Central", "Middle

Atlantic", "Mountain", "New England", "Pacific", "South Atlantic",

"West North Central", "West South Central"]

mxd = arcpy.mapping.MapDocument(path + r"\States_SubRegions.mxd")
df = arcpy.mapping.ListDataFrames(mxd)[0]

lyr = arcpy.mapping.ListLayers(mxd, "States")[0]

pageCount = 1

for region in subRegionList:

 #Generate image for each sub region

 whereClause = "\"SUB_REGION\" = '" + region + "'"

 lyr.definitionQuery = whereClause

 arcpy.SelectLayerByAttribute_management(lyr, "NEW_SELECTION",

whereClause)

 df.extent = lyr.getSelectedExtent()

 arcpy.SelectLayerByAttribute_management(lyr, "CLEAR_SELECTION")

 arcpy.mapping.ExportToEMF(mxd, path + "\RegionalPicture.emf", df)

#single file

 #Generate report

 arcpy.mapping.ExportReport(report_source=lyr,

 report_layout_file=path +

r"\States_SubRegions.rlf",

 output_file=path + r"\temp" +

str(pageCount) + ".pdf",

 starting_page_number=pageCount)

 #Append pages into final output

 pdfDoc.appendPages(path + r"\temp" + str(pageCount) + ".pdf")

 os.remove(path + r"\temp.pdf")

 pageCount = pageCount + 1

pdfDoc.saveAndClose()

del mxd

ExportToAI (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to Adobe

Illustrator (AI) format.

Discussion

Adobe Illustrator (AI) files are an excellent format for postprocessing in Adobe

Illustrator as well as an interchange format for publishing. The ArcMap AI format

preserves most layers from the ArcMap table of contents. However, the Adobe

Illustrator file format that ArcMap writes does not support font embedding, so

users who do not have the Esri fonts installed may not be able to view AI files with

the proper symbology. AI exports from ArcMap can define colors in CMYK or RGB

values.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToAI (map_document, out_ai, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {image_quality}, {colorspace},

{picture_symbol}, {convert_markers})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_ai
A string that represents the path and file name for the output

export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is only

used when exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export image in

pixels for a data frame export. df_export_height is

only used when exporting a data frame. Exporting a page

layout uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in

dots per inch (DPI).

(The default value is 300)

Integer

image_quality
A string that defines output image quality, the draw

resolution of map layers that draw as rasters.

 BEST —An output image quality resample ratio of 1.

 BETTER —An output image quality resample ratio of 2.

 NORMAL —An output image quality resample ratio of 3.

 FASTER —An output image quality resample ratio of 4.

 FASTEST —An output image quality resample ratio of 5.

(The default value is BEST)

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

colorspace
A string that defines which color space will be written to the

export file.

 CMYK —Cyan, Magenta,Yellow, and blacK color model.

 RGB —Red, Green, and Blue color model.

(The default value is RGB)

String

picture_symbol
A string that defines whether picture markers and picture

fills will be converted to vector or rasterized on output.

 RASTERIZE_BITMAP — Rasterize layers with bitmap
markers/fills.

 RASTERIZE_PICTURE —Rasterize layers with any picture
marker/fill.

 VECTORIZE_BITMAP —Vectorize layers with bitmap
markers/fills.

(The default value is RASTERIZE_BITMAP)

String

convert_markers
A Boolean that controls the coversion of character-based

marker symbols to polygons. This allows the symbols to

appear correctly if the symbol font is not available or cannot

be embedded. However, setting this parameter to True

disables font embedding for all character-based marker

symbols, which can result in a change in their appearance.

(The default value is False)

Boolean

Code Sample

ExportToAI example 1

This script opens a map document and exports the page layout to an Adobe

Illustrator file using default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToAI(mxd, r"C:\Project\Output\Project.ai")

del mxd

ExportToAI example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToAI(mxd,

r"C:\Project\Output\ProjectDataFrame.ai", df,

 df_export_width=1600,

 df_export_height=1200)

del mxd

ExportToBMP (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Microsoft

Windows Bitmap (BMP) format.

Discussion

BMP files are simple, native Windows raster images. BMPs can store pixel data at

several bit depths and can be compressed using the lossless RLE method.

However, in general, BMPs are much larger than formats such as JPEG or PNG.

They do not scale as well as vector files and may appear blocky or jagged when

increased in size. BMPs generated from the data view in ArcMap can be

generated with an accompanying world file so that they can be used as

georeferenced raster data. BMPs without a world file are commonly used as

inserted graphics in other documents.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

World files are not generated for page layouts; a referenced data frame must be

provided or the export will fail.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToBMP (map_document, out_bmp, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {world_file}, {color_mode},

{rle_compression})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_bmp
A string that represents the path and file name for the output

export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is only

used when exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_heigh

t

A number that defines the height of the export image in

pixels for a data frame export. df_export_height is

only used when exporting a data frame. Exporting a page

layout uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in

dots per inch (DPI).

(The default value is 96)

Integer

world_file If set to True, a georeferenced world file is created. The

file contains pixel scale information and real-world

coordinate information.

(The default value is False)

Boolean

color_mode
This value specifies the number of bits used to describe

color.

 24-BIT_TRUE_COLOR —24-bit true color.

 8-BIT_PALETTE —8-bit palette.

 8-BIT_GRAYSCALE —8-bit grayscale.

 1-BIT_MONOCHROME_MASK —1-bit monochrome
mask.

 1-BIT_MONOCHROME_THRESHOLD —1-bit

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

monochrome threshold.

(The default value is 24-BIT_TRUE_COLOR)

rle_compression
This value represents a compression scheme.

 NONE —Compression is not applied.

 RLE —Run-length encoded compression.

(The default value is NONE)

String

Code Sample

ExportToBMP example 1

This script opens a map document and exports the page layout to a BMP file using

default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToBMP(mxd, r"C:\Project\Output\Project.bmp")

del mxd

ExportToBMP example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail. Setting world_file = True generates a georeferenced world file

in the same directory as the output file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToBMP(mxd,

r"C:\Project\Output\ProjectDataFrame.bmp", df,

 df_export_width=1600,

 df_export_height=1200,

 world_file=True)

del mxd

ExportToEMF (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Enhanced

Metafile (EMF) format.

Discussion

EMF files are native Windows graphics files that can contain a mixture of vector

and raster data. They are useful for embedding in Windows documents because

the vector portions of the EMF can be resized without loss of quality. However,

since EMF does not support font embedding and is exclusively a Windows format,

it is not commonly used as an interchange format between users.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToEMF (map_document, out_emf, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {image_quality}, {description},

{picture_symbol}, {convert_markers})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_emf
A string that represents the path and file name for the output

export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is only

used when exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export image in

pixels for a data frame export. df_export_height is

only used when exporting a data frame. Exporting a page

layout uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in

dots per inch (DPI).

(The default value is 300)

Integer

image_quality
A string that defines output image quality, the draw

resolution of map layers that draw as rasters.

 BEST —An output image quality resample ratio of 1.

 BETTER —An output image quality resample ratio of 2.

 NORMAL —An output image quality resample ratio of 3.

 FASTER —An output image quality resample ratio of 4.

 FASTEST —An output image quality resample ratio of 5.

(The default value is BEST)

String

description
A string that assigns a description to the output file.

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

picture_symbol
A string that defines whether picture markers and picture

fills will be converted to vector or rasterized on output.

 RASTERIZE_BITMAP — Rasterize layers with bitmap
markers/fills.

 RASTERIZE_PICTURE —Rasterize layers with any picture
marker/fill.

 VECTORIZE_BITMAP —Vectorize layers with bitmap
markers/fills.

(The default value is RASTERIZE_BITMAP)

String

convert_markers
A Boolean that controls the coversion of character-based

marker symbols to polygons. This allows the symbols to

appear correctly if the symbol font is not available or cannot

be embedded. However, setting this parameter to True

disables font embedding for all character-based marker

symbols, which can result in a change in their appearance.

(The default value is False)

Boolean

Code Sample

ExportToEMF example 1

This script opens a map document and exports the page layout to an EMF file

using default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToEMF(mxd, r"C:\Project\Output\Project.emf")

del mxd

ExportToEMF example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToEMF(mxd,

r"C:\Project\Output\ProjectDataFrame.emf", df,

 df_export_width=1600,

 df_export_height=1200)

del mxd

ExportToEPS (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to an

Encapsulated Postscript (EPS) format.

Discussion

EPS files use the PostScript page description language to describe vector and

raster objects. PostScript is the publishing industry standard for high-end graphics

files, cartography, and printing. EPS files can be edited in many drawing

applications or placed as a graphic in most page layout applications. EPS files

exported from ArcMap support embedding of fonts so that users who do not have

Esri Fonts installed can still view the proper symbology. EPS exports from ArcMap

can define colors in CMYK or RGB values.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToEPS (map_document, out_eps, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {image_quality}, {colorspace},

{ps_lang_level}, {image_compression}, {picture_symbol}, {convert_markers},

{embed_fonts}, {jpeg_compression_quality})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_eps
A string that represents the path and file name for

the output export file.

String

data_frame A variable that references a DataFrame object. Use

the string/constant "PAGE_LAYOUT" to export

the map document's page layout instead of an

individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export

image in pixels for a data frame

export. df_export_width is only used when

exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export

image in pixels for a data frame

export. df_export_height is only used when

exporting a data frame. Exporting a page layout

uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export

file in dots per inch (DPI).

(The default value is 300)

Integer

image_quality
A string that defines output image quality, the draw

resolution of map layers that draw as rasters.

 BEST —An output image quality resample ratio
of 1.

 BETTER —An output image quality resample
ratio of 2.

 NORMAL —An output image quality resample
ratio of 3.

 FASTER —An output image quality resample

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

ratio of 4.

 FASTEST —An output image quality resample
ratio of 5.

(The default value is BEST)

colorspace
A string that defines the colorspace of the export

file.

 CMYK —Cyan, Magenta,Yellow, and blacK
color model.

 RGB —Red, Green, and Blue color model.

(The default value is RGB)

String

ps_lang_level
A number that represents the PostScript Language

level. Level 3 is the most recent release, but some

older PostScript interpreters may not be able to read

files created using this version. Valid levels are 2

and 3.

(The default value is 3)

Integer

image_compression
A string that defines the compression scheme used

to compress image or raster data in the output file.

 ADAPTIVE —Automatically selects the best
compression type for each image on the page.
JPEG will be used for large images with many
unique colors. DEFLATE will be used for all
other images.

 JPEG —A lossy data compression.

 DEFLATE —A lossless data compression.

 LZW —Lempel-Ziv-Welch, a lossless data
compression.

 NONE —Compression is not applied.

 RLE —Run-length encoded compression.

(The default value is ADAPTIVE)

String

picture_symbol
A string that defines whether picture markers and

picture fills will be converted to vector or rasterized

on output.

 RASTERIZE_BITMAP — Rasterize layers with
bitmap markers/fills.

 RASTERIZE_PICTURE —Rasterize layers with
any picture marker/fill.

 VECTORIZE_BITMAP —Vectorize layers with
bitmap markers/fills.

(The default value is RASTERIZE_BITMAP)

String

convert_markers
A Boolean that controls the coversion of character-

Boolean

based marker symbols to polygons. This allows the

symbols to appear correctly if the symbol font is

not available or cannot be embedded. However,

setting this parameter to True disables font

embedding for all character-based marker symbols,

which can result in a change in their appearance.

(The default value is False)

embed_fonts
A Boolean that controls the embedding of fonts in

export files. Font embedding allows text and

character markers to be displayed correctly when

the document is viewed on a computer that does not

have necessary fonts installed.

(The default value is True)

Boolean

jpeg_compression_quality A number that controls compression quality value

when image_compression is set to

ADAPTIVE or JPEG. The valid range is 1 to 100.

A jpeg_compression_quality of 100

provides the best quality images but creates large

export files. The recommended range is between 70

and 90.

(The default value is 80)

Integer

Code Sample

ExportToEPS example 1

This script opens a map document and exports the page layout to an EPS file

using default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToEPS(mxd, r"C:\Project\Output\Project.eps")

del mxd

ExportToEPS example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToEPS(mxd,

r"C:\Project\Output\ProjectDataFrame.eps", df,

 df_export_width=1600,

 df_export_height=1200)

del mxd

ExportToGIF (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Graphic

Interchange (GIF) format.

Discussion

GIF files are a standard raster format for use on the Web. GIFs cannot contain

more than 256 colors (8 bits per pixel), which along with optional lossless RLE or

LZW compression makes them smaller than other file formats. They are a good

choice for maps that contain a limited number of colors, but may not display

continuous raster data correctly due to the color limitation. GIF files also have the

ability to define a transparent color; part of the image can display as transparent in

a Web browser, allowing backgrounds, images, or colors to show through. GIFs

exported from the data view in ArcMap can be generated with an accompanying

world file for use as georeferenced raster data.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

World files are not generated for page layouts; a referenced data frame must be

provided or the export will fail.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToGIF (map_document, out_gif, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {world_file}, {color_mode},

{gif_compression}, {background_color}, {transparent_color}, {interlaced})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_gif
A string that represents the path and file name for the output

export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is

only used when exporting a data frame. Exporting a page

layout uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export image in

pixels for a data frame export. df_export_height is

only used when exporting a data frame. Exporting a page

layout uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in

dots per inch (DPI).

(The default value is 96)

Integer

world_file If set to True, a georeferenced world file is created. The

file contains pixel scale information and real-world

coordinate information.

(The default value is False)

Boolean

color_mode
This value specifies the number of bits used to describe

color.

 24-BIT_TRUE_COLOR —24-bit true color.

 8-BIT_PALETTE —8-bit palette.

 8-BIT_GRAYSCALE —8-bit grayscale.

 1-BIT_MONOCHROME_MASK —1-bit monochrome
mask.

 1-BIT_MONOCHROME_THRESHOLD —1 bit

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

monochrome threshold.

(The default value is 8-BIT_PALETTE)

gif_compression
This value represents a compression scheme.

 LZW —Lempel-Ziv-Welch, a lossless data compression.

 NONE —Compression is not applied.

 RLE —Run-length encoded compression.

(The default value is NONE)

String

background_color
A defined color is used as a background to the image, or as

a mask in the case of monochrome masked exports.

(The default value is 255, 255, 255)

String

transparent_color
A defined color to be displayed as transparent in the image.

String

interlaced If set to True, an interlaced image will be created. An

interlaced image displays as a series of scan lines rather

than as a whole image at one time.

(The default value is False)

Boolean

Code Sample

ExportToGIF example 1

This script opens a map document and exports the page layout to a GIF file using

default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToGIF(mxd, r"C:\Project\Output\Project.gif")

del mxd

ExportToGIF example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail. Setting world_file = True generates a georeferenced world file

in the same directory as the output file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToGIF(mxd,

r"C:\Project\Output\ProjectDataFrame.gif", df,

 df_export_width=1600,

 df_export_height=1200,

 world_file=True)

del mxd

ExportToJPEG (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Joint

Photographic Experts Group (JPEG) format.

Discussion

JPEG files are compressed image files. They support 24-bit color and can be

substantially more compact than many other file types. The JPEG compression

algorithm is lossy and is not as well suited for line drawings and other textual or

iconic graphics, and thus the PNG and GIF formats are preferred for these types

of images.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

World files are not generated for page layout exports; a referenced data frame

must be provided or the export will fail.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToJPEG (map_document, out_jpeg, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {world_file}, {color_mode}, {jpeg_quality},

{progressive})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_jpeg
A string that represents the path and file name for the output

export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is only

used when exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export image in

pixels for a data frame export. df_export_height is

only used when exporting a data frame. Exporting a page

layout uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in

dots per inch (DPI).

(The default value is 96)

Integer

world_file If set to True, a georeferenced world file is created. The file

contains pixel scale information and real-world coordinate

information.

(The default value is False)

Boolean

color_mode
This value specifies the number of bits used to describe

color.

 24-BIT_TRUE_COLOR —24-bit true color.

 8-BIT_PALETTE —8-bit palette.

 8-BIT_GRAYSCALE —8-bit grayscale.

 1-BIT_MONOCHROME_MASK —1-bit monochrome
mask.

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

 1-BIT_MONOCHROME_THRESHOLD —1-bit
monochrome threshold.

(The default value is 24-BIT_TRUE_COLOR)

jpeg_quality
This value (0–100) controls the amount of compression

applied to the output image. For JPEG, image quality is

adversely affected the more compression is applied. A

higher quality (highest = 100) setting will produce sharper

images and larger file sizes. A lower quality setting will

produce more image artifacts and smaller files.

(The default value is 100)

Integer

progressive If set to True, a progressive JPEG file will be created. A

progressive image is one that displays in a series of scans of

increasing quality rather than displaying the whole image at

once.

(The default value is False)

Boolean

Code Sample

ExportToJPEG example 1

This script opens a map document and exports the page layout to a JPEG file

using default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToJPEG(mxd, r"C:\Project\Output\Project.jpg")

del mxd

ExportToJPEG example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail. Setting world_file = True generates a georeferenced world file

in the same directory as the output file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToJPEG(mxd,

r"C:\Project\Output\ProjectDataFrame.jpg", df,

 df_export_width=1600,

 df_export_height=1200,

 world_file=True)

del mxd

ExportToPDF (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Portable

Document Format (PDF).

Discussion

PDF files are designed to be consistently viewable and printable across different

platforms. They are commonly used for distributing documents on the Web and

are becoming a standard interchange format for content delivery. ArcMap PDFs

are editable in many graphics applications and retain annotation, labeling, and

attribute data for map layers from the ArcMap table of contents. PDF exports from

ArcMap support embedding of fonts and thus can display symbology correctly

even if the user does not have Esri fonts installed. PDF exports from ArcMap can

define colors in CMYK or RGB values.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToPDF (map_document, out_pdf, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {image_quality}, {colorspace},

{compress_vectors}, {image_compression}, {picture_symbol},

{convert_markers}, {embed_fonts}, {layers_attributes}, {georef_info},

{jpeg_compression_quality})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_pdf
A string that represents the path and file name for

the output export file.

String

data_frame A variable that references a DataFrame object. Use

the string/constant "PAGE_LAYOUT" to export

the map document's page layout instead of an

individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export

image in pixels for a data frame

export. df_export_width is only used when

exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export

image in pixels for a data frame

export. df_export_height is only used when

exporting a data frame. Exporting a page layout

uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export

file in dots per inch (DPI).

(The default value is 300)

Integer

image_quality
A string that defines output image quality, the draw

resolution of map layers that draw as rasters.

 BEST —An output image quality resample ratio
of 1.

 BETTER —An output image quality resample
ratio of 2.

 NORMAL —An output image quality resample

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

ratio of 3.

 FASTER —An output image quality resample
ratio of 4.

 FASTEST —An output image quality resample
ratio of 5.

(The default value is BEST)

colorspace
A string that defines the colorspace of the export

file. Valid values are CYMK and RGB.

 CMYK —Cyan, Magenta,Yellow, and blacK
color model.

 RGB —Red, Green, and Blue color model.

(The default value is RGB)

String

compress_vectors
A Boolean that controls compression of vector and

text portions of the output file. Image compression

is defined separately.

(The default value is True)

Boolean

image_compression
A string that defines the compression scheme used

to compress image or raster data in the output file.

 ADAPTIVE —Automatically selects the best
compression type for each image on the page.
JPEG will be used for large images with many
unique colors. DEFLATE will be used for all
other images.

 JPEG —A lossy data compression.

 DEFLATE —A lossless data compression.

 LZW —Lempel-Ziv-Welch, a lossless data
compression.

 NONE —Compression is not applied.

 RLE —Run-length encoded compression.

(The default value is ADAPTIVE)

String

picture_symbol
A string that defines whether picture markers and

picture fills will be converted to vector or rasterized

on output.

 RASTERIZE_BITMAP — Rasterize layers with
bitmap markers/fills.

 RASTERIZE_PICTURE —Rasterize layers with
any picture marker/fill.

 VECTORIZE_BITMAP —Vectorize layers with
bitmap markers/fills.

(The default value is RASTERIZE_BITMAP)

String

convert_markers
A Boolean that controls the coversion of character-

based marker symbols to polygons. This allows the

symbols to appear correctly if the symbol font is

not available or cannot be embedded. However,

setting this parameter to True disables font

embedding for all character-based marker symbols,

which can result in a change in their appearance.

(The default value is False)

Boolean

embed_fonts
A Boolean that controls the embedding of fonts in

the export file. Font embedding allows text and

character markers to be displayed correctly when

the document is viewed on a computer that does not

have the necessary fonts installed.

(The default value is True)

Boolean

layers_attributes
A string that controls inclusion of PDF layer and

PDF object data (attributes) in the export file.

 LAYERS_ONLY —Export PDF layers only.

 LAYERS_AND_ATTRIBUTES —Export PDF layers
and feature attributes.

 NONE —None.

(The default value is LAYERS_ONLY)

String

georef_info
A Boolean that enables the export of coordinate

system information for each data frame into the

output PDF file.

(The default value is True)

Boolean

jpeg_compression_quality A number that controls compression quality value

when image_compression is set to

ADAPTIVE or JPEG. The valid range is 1 to 100.

A jpeg_compression_quality of 100

provides the best quality images but creates large

export files. The recommended range is between 70

and 90.

(The default value is 80)

Integer

Code Sample

ExportToPDF example 1

This script opens a map document and exports the page layout to a PDF file using

default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToPDF(mxd, r"C:\Project\Output\Project.pdf")

del mxd

ExportToPDF example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToPDF(mxd,

r"C:\Project\Output\ProjectDataFrame.pdf", df,

 df_export_width=1600,

 df_export_height=1200)

del mxd

ExportToPNG (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Portable

Network Graphics (PNG) format.

Discussion

PNG is a raster format designed for use on the Web as an alternative to GIF. It

supports 24-bit color and is compressed using a lossless compression. PNG files

also have the ability to define a transparent color; part of the image can display as

transparent in a Web browser, allowing backgrounds, images, or colors to show

through. On most images, PNG can achieve greater compression (and thus

smaller file sizes) than GIF. PNGs exported from the data view in ArcMap can be

generated with an accompanying world file for use as georeferenced raster data.

This format is gaining popularity in the Web design community.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

World files are not generated for page layouts; a referenced data frame must be

provided or the export will fail.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToPNG (map_document, out_png, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {world_file}, {color_mode},

{background_color}, {transparent_color}, {interlaced})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_png
A string that represents the path and file name for the output

export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is

only used when exporting a data frame. Exporting a page

layout uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export image in

pixels for a data frame export. df_export_height is

only used when exporting a data frame. Exporting a page

layout uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in

dots per inch (DPI).

(The default value is 96)

Integer

world_file If set to True, a georeferenced world file is created. The

file contains pixel scale information and real-world

coordinate information.

(The default value is False)

Boolean

color_mode
This value specifies the number of bits used to describe

color.

 24-BIT_TRUE_COLOR —24-bit true color

 8-BIT_PALETTE —8-bit palette

 8-BIT_GRAYSCALE —8-bit grayscale

 1-BIT_MONOCHROME_MASK —1-bit monochrome
mask

 1-BIT_MONOCHROME_THRESHOLD —1-bit

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

monochrome threshold

(The default value is 24-BIT_TRUE_COLOR)

background_color
A defined color is used as a background to the image, or as

a mask in the case of monochrome masked exports.

(The default value is 255, 255, 255)

String

transparent_color
A defined color to be displayed as transparent in the image.

String

interlaced
If set to True, an interlaced image will be created. An

interlaced image displays as a series of scan lines rather

than as a whole image at one time.

(The default value is False)

Boolean

Code Sample

ExportToPNG example 1

This script opens a map document and exports the page layout to a PNG file using

default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToPNG(mxd, r"C:\Project\Output\Project.png")

del mxd

ExportToPNG example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail. Setting world_file = True generates a georeferenced world file

in the same directory as the output file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToPNG(mxd,

r"C:\Project\Output\ProjectDataFrame.png", df,

 df_export_width=1600,

 df_export_height=1200,

 world_file=True)

del mxd

ExportToSVG (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Scalable

Vector Graphics (SVG) format.

Discussion

SVG is an XML-based file format that has been specifically designed for viewing

on the Web. SVG can contain both vector and raster information. This is a good

choice for displaying maps on a web page because it is rescalable and more

easily edited than raster files. SVG has been gaining in popularity since the World

Wide Web Consortium (W3C) selected it as their standard vector Web format.

Some Web browsers may require a plug-in to view SVG files; older browsers may

not be able to view SVG files at all. SVG supports font embedding, so users who

do not have the Esri fonts installed can still view ArcMap SVG exports with proper

symbology. ArcMap can also produce compressed SVG files. The file extension

changes to *.SVGZ when this option is enabled.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToSVG (map_document, out_svg, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {image_quality}, {compress_document},

{picture_symbol}, {convert_markers}, {embed_fonts})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_svg
A string that represents the path and file name for the

output export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data

frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is

only used when exporting a data frame. Exporting a page

layout uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the height of the export image in

pixels for a data frame export. df_export_height is

only used when exporting a data frame. Exporting a page

layout uses the map document page height instead

of df_export_height.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in

dots per inch (DPI).

(The default value is 300)

Integer

image_quality
A string that defines output image quality, the draw

resolution of map layers that draw as rasters.

 BEST —An output image quality resample ratio of 1.

 BETTER —An output image quality resample ratio of
2.

 NORMAL —An output image quality resample ratio
of 3.

 FASTER —An output image quality resample ratio of
4.

 FASTEST —An output image quality resample ratio
of 5.

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

(The default value is BEST)

compress_document If set to True, a compressed export will be created. For

SVG, the entire document is compressed and it changes

the file extension to *.svgz.

(The default value is False)

Boolean

picture_symbol
A string that defines whether picture markers and picture

fills will be converted to vector or rasterized on output.

 RASTERIZE_BITMAP — Rasterize layers with bitmap
markers/fills.

 RASTERIZE_PICTURE —Rasterize layers with any
picture marker/fill.

 VECTORIZE_BITMAP —Vectorize layers with bitmap
markers/fills.

(The default value is RASTERIZE_BITMAP)

String

convert_markers A Boolean that controls the coversion of character-based

marker symbols to polygons. This allows the symbols to

appear correctly if the symbol font is not available or

cannot be embedded. However, setting this parameter

to True disables font embedding for all character-based

marker symbols, which can result in a change in their

appearance.

(The default value is False)

Boolean

embed_fonts
A Boolean that controls the embedding of fonts in export

files. Font embedding allows text and character markers

to be displayed correctly when the document is viewed

on a computer that does not have the necessary fonts

installed.

(The default value is False)

Boolean

Code Sample

ExportToSVG example 1

This script opens a map document and exports the page layout to an SVG file

using default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToSVG(mxd, r"C:\Project\Output\Project.svg")

del mxd

ExportToSVG example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToSVG(mxd,

r"C:\Project\Output\ProjectDataFrame.svg", df,

 df_export_width=1600,

 df_export_height=1200)

del mxd

ExportToTIFF (arcpy.mapping)
Top

Summary

Exports the page layout or data frame of a map document (.mxd) to the Tagged

Image File Format (TIFF).

Discussion

TIFF files are the most versatile raster format. TIFFs can store pixel data at

several bit depths and can be compressed with either lossy or loss less

compression techniques depending on file size and accuracy requirements. They

are the best choice for importing into image editing applications across operating

systems. However, they cannot be natively viewed by a web browser. ArcMap

TIFFs exported from the data view also support georeferencing information in

GeoTIFF tags or in a separate world file for use as raster data.

To export a single data frame instead of the entire page layout, pass

a DataFrame object to the function's data_frame parameter. Because data

frame exports do not have an associated page to provide height and width

information, you must provide this via

the df_export_width and df_export_height parameters.

Controlling graphic quality of the generated image differs for page layout exports

versus data frame exports. When exporting a page layout, control image detail by

changing the resolution parameter. When exporting a data frame, keep

the resolution parameter at its default value, and change

the df_export_width and df_export_height parameters to alter image

detail. The height and width parameters directly control the number of pixels

generated in the export file and are only used when exporting a data frame.

Images with larger numbers of pixels will have higher image detail. For most page

layout exports, the default parameter values should generate good results and

nice looking export images on the first try. For data frame exports, you may need

to experiment with the df_export_width and df_export_height values a

few times before getting the result you want.

World files are not generated for page layouts; a referenced data frame must be

provided or the export will fail.

Refer to the Exporting your map topic in ArcGIS Help for more detailed

discussions on exporting maps.

Syntax

ExportToTIFF (map_document, out_tiff, {data_frame}, {df_export_width},

{df_export_height}, {resolution}, {world_file}, {color_mode},

{tiff_compression}, {geoTIFF_tags})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

out_tiff
A string that represents the path and file name for the output

export file.

String

data_frame A variable that references a DataFrame object. Use the

string/constant "PAGE_LAYOUT" to export the map

document's page layout instead of an individual data frame.

(The default value is PAGE_LAYOUT)

Object

df_export_width A number that defines the width of the export image in

pixels for a data frame export. df_export_width is only

used when exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 640)

Integer

df_export_height A number that defines the width of the export image in

pixels for a data frame export. df_export_width is only

used when exporting a data frame. Exporting a page layout

uses the map document page width instead

of df_export_width.

(The default value is 480)

Integer

resolution
A number that defines the resolution of the export file in DPI

(dots per inch).

(The default value is 96)

Integer

world_file If set to True, a georeferenced world file is created. The file

contains pixel scale information and real-world coordinate

information.

(The default value is False)

Boolean

color_mode
This value specifies the number of bits used to describe

color.

 24-BIT_TRUE_COLOR —24-bit true color.

 8-BIT_PALETTE —8-bit palette.

 8-BIT_GRAYSCALE —8-bit grayscale.

 1-BIT_MONOCHROME_MASK —1-bit monochrome
mask.

String

http://resources.arcgis.com/en/help/main/10.2/00sm/00sm00000004000000.htm

 1-BIT_MONOCHROME_THRESHOLD —1-bit
monochrome threshold.

(The default value is 24-BIT_TRUE_COLOR)

tiff_compression
This value represents a compression scheme.

 DEFLATE —A lossless data compression.

 JPEG —JPEG compression.

 LZW —Lempel-Ziv-Welch, a lossless data compression.

 NONE —Compression is not applied.

 PACK_BITS —Pack bits compression.

(The default value is LZW)

String

geoTIFF_tags If set to True, georeferencing tags are included in the

structure of the TIFF export file. The tags contain pixel scale

information and real-world coordinate information. These

tags can be read by applications that support GeoTIFF

format.

(The default value is False)

Boolean

Code Sample

ExportToTIFF example 1

This script opens a map document and exports the page layout to a TIFF file using

default values for all options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.ExportToTIFF(mxd, r"C:\Project\Output\Project.tif")

del mxd

ExportToTIFF example 2

This script will export a single data frame instead of the entire page layout, similar

to exporting from data view in the ArcMap application. The default values

for df_export_width and df_export_height are 640 and 480. By passing

larger values for these parameters, we are able to produce an output image with

higher detail. Setting geoTIFF_tags=True generates georeference information

inside of the TIFF file header.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

arcpy.mapping.ExportToTIFF(mxd,

r"C:\Project\Output\ProjectDataFrame.tif", df,

 df_export_width=1600,

 df_export_height=1200,

 geoTIFF_tags=True)

del mxd

InsertLayer (arcpy.mapping)
Top

Summary

Provides the ability to insert a layer at a specific location within a data frame or

within a group layer in a map document (.mxd).

Discussion

InsertLayer is a more precise way of positioning a layer into a data frame or a

group layer because a reference layer is used to specify the exact location. The

layer is either added before or after the reference layer.

If the reference layer references a layer at the root level of a data frame, the

inserted layer will be added to the root level of the data frame. If the reference

layer references a layer within a group layer, the inserted layer will be added into

the group. Because a reference layer is a required parameter, it is not possible to

use InsertLayer to add a layer into an empty data frame or empty group layer.

The AddLayer or AddLayerToGroup functions do allow you to add a layer into an

empty data frame or group layer, respectively.

The layer that is inserted must reference an already existing layer (keep in mind

that a layer can be a group layer as well). The source can either come from a layer

file on disk, from within the same map document and data frame, the same map

document but different data frame, or even from a completely separate map

document.

The way a layer appears in the table of contents (TOC) after it is added depends

on the source layer and how it appears. For example, some layers are completely

collapsed and do not display their symbol(s) in the TOC. This setting is built into

the layer. If a layer is collasped, saved to a layer file, and then added to a map

document, the layer will be collasped in the new map document when added

via InsertLayer.

Syntax

InsertLayer (data_frame, reference_layer, insert_layer, {insert_position})

Parameter Explanation Data Type

data_frame A reference to a DataFrame object into which the new layer will

be inserted.
DataFrame

reference_layer A Layer object representing an existing layer that determines the

location where the new layer will be inserted.
Layer

insert_layer A reference to a Layer object representing the layer to be inserted. Layer

insert_position
A constant that determines the placement of the added layer

relative to the reference layer.

 AFTER —Inserts the new layer after or below the reference
layer

 BEFORE —Inserts the new layer before or above the
reference layer

(The default value is BEFORE)

String

Code Sample

InsertLayer example 1:

The follwing script will insert a new layer from a layer (.lyr) file on disk and place

it before a layer called Lakes which is in a data frame called County Maps.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

refLayer = arcpy.mapping.ListLayers(mxd, "Lakes", df)[0]

insertLayer = arcpy.mapping.Layer(r"C:\Project\Data\Rivers.lyr")

arcpy.mapping.InsertLayer(df, refLayer, insertLayer, "BEFORE")

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, insertLayer

InsertLayer example 2:

The following script will insert a layer called Rivers, from another, independant

map document, above a layer called Lakes in a data frame called County Maps.

import arcpy

#Reference layer in secondary map document

mxd2 = arcpy.mapping.MapDocument(r"C:\Project\ProjectTemplate.mxd")

df2 = arcpy.mapping.ListDataFrames(mxd2, "Layers")[0]

insertLayer = arcpy.mapping.ListLayers(mxd2, "Rivers", df2)[0]

#Insert layer into primary map document

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

refLayer = arcpy.mapping.ListLayers(mxd, "Lakes", df)[0]

arcpy.mapping.InsertLayer(df, refLayer, insertLayer, "BEFORE")

#Save to a new map document and clear variable references

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, mxd2, insertLayer

Layer (arcpy.mapping)
Top

Summary

References a layer (.lyr) file stored on disk.

Discussion

For a more complete discussion, refer to the Layer Class help topic.

Syntax

Layer (lyr_file_path)

Parameter Explanation
Data

Type

lyr_file_path A string that includes the full path and file name of an existing layer

(.lyr) file.

String

Return Value

Data

Type
Explanation

Layer
The Layer object provides access to a layer file's layer properties and provides different

options for saving a layer (.lyr) file to disk.

ListBookmarks (arcpy.mapping)
Top

Summary

Returns a Python list of named tuples that provide access to each spatial

bookmark's name and extent.

Discussion

ListBookmarks always returns a Python list of named tuples. Each tuple

provides the bookmark's name as a string and the bookmark's extent as

an Extent object. In order to return a specific tuple, an index value must be used

on the list (for example, bkmk =

arcpy.mapping.ListBookmarks(mxd)[0]). For loops on a list provide an

easy mechanism to iterate through each tuple in the list (for example, for bkmk

in arcpy.mapping.ListBookmarks(mxd):).

Wildcards are used on the name property and are not case sensitive. A wildcard

string of "so*" will return a spatial bookmark with the name South East.

Wildcards can be skipped in the scripting syntax by passing an empty string (""),

an asterisk (*), or entering wildcard=None, or nothing at all if it is the last

optional parameter in the syntax.

Avoid having spatial bookmarks in a single data frame that have the same name

because the name property is really the only practical way of identifying a spatial

extent. Bookmarks can have the same name if they are in different data frames.

Syntax

ListBookmarks (map_document, {wildcard}, {data_frame})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

wildcard
A combination of asterisks (*) and characters can be used to

help limit the results. It is used to filter spatial bookmark

names.

(The default value is None)

String

data_frame A variable that references a DataFrame object. This is used to

find a spatial bookmark associated with a specific data frame.

(The default value is None)

DataFrame

Return Value

Data Type Explanation

List
A Python list of named tuples.

 extent —A GP Extent object

 name —A string that represents the name of a spatial bookmark

Code Sample

ListBookmarks example 1

This script will print the name of each spatial bookmark in a data frame

named Transportation. The wildcard parameter is skipped using a blank

string.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

for bkmk in arcpy.mapping.ListBookmarks(mxd, "", df):

 print bkmk.name

del mxd

http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm
http://resources.arcgis.com/en/help/main/10.2/018z/018z00000072000000.htm

ListBookmarks example 2

Similar to example 1, the following script will loop through each bookmark in

the Transportation data frame, set the data frame extent, and export the data

frame to a JPEG file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

for bkmk in arcpy.mapping.ListBookmarks(mxd, data_frame=df):

 df.extent = bkmk.extent

 outFile = r"C:\Project\Output\\" + bkmk.name + ".jpg"

 arcpy.mapping.ExportToJPEG(mxd, outFile, df)

del mxd

ListBookmarks example 3

This sample will convert each bookmark in a map document to a feature. The

resulting feature class can be used for a variety of workflows, including use as

a Data Driven Pages index layer for creating map books.

import arcpy, os

The map with the bookmarks

mxd = arcpy.mapping.MapDocument(r"C:\Project\Counties.mxd")

The output feature class to be created -

This feature class will store the bookmarks as features

outFC = r'C:\Project\Counties.gdb\Bookmarks'

A template feature class that contains the attribute schema

Including a "Name" field to store the bookmark name

template = r'C:\Project\Counties.gdb\Template'

if arcpy.Exists(outFC):

 arcpy.Delete_management(outFC)

arcpy.CreateFeatureclass_management(os.path.dirname(outFC),

 os.path.basename(outFC),

 "POLYGON", template,

 spatial_reference=template)

cur = arcpy.da.InsertCursor(outFC, ["SHAPE@", "Name"])

array = arcpy.Array()

for bkmk in arcpy.mapping.ListBookmarks(mxd):

 array.add(arcpy.Point(bkmk.extent.XMin, bkmk.extent.YMin))

 array.add(arcpy.Point(bkmk.extent.XMin, bkmk.extent.YMax))

 array.add(arcpy.Point(bkmk.extent.XMax, bkmk.extent.YMax))

 array.add(arcpy.Point(bkmk.extent.XMax, bkmk.extent.YMin))

 # To close the polygon, add the first point again

 array.add(arcpy.Point(bkmk.extent.XMin, bkmk.extent.YMin))

 cur.insertRow([arcpy.Polygon(array), bkmk.name])

 array.removeAll()

ListBrokenDataSources (arcpy.mapping)
Top

Summary

Returns a Python list of Layer objects within a map document (.mxd) or layer

(.lyr) file that have broken connections to their original source data.

Discussion

ListBrokenDataSources always returns a Python list object even if only one

broken layer is returned. In order to return a single layer object, an index value

must be used on the list (e.g., brkLyr =

arcpy.mapping.ListBrokenDataSources(mxd)[0]). For loops on a list

provide an easy mechanism to iterate through each item in the list (e.g., for

brkLyr in arcpy.mapping.ListBrokenDataSources(mxd):).

Some layers within a map document or layer file may be password protected

because the user and password information is not saved within the layer file or

map document. Map documents that contain these layers typically prompt the user

to enter the appropriate information while the document is opening. The

arcpy.mapping scripting environment will, by default, supress these dialogs during

execution but that means that the layers will be treated as though they have

broken data sources. In otherwords, secured layers will not be rendered in any

output. If it is necessary for these layers to render appropriately then there are a

couple of options. First, save the username and password information with the

layers. Second, the CreateArcSDEConnectionFile geoprocessing function allows

you to create a connection that is persisted in memory. If this command is used

prior to opening a map document (.mxd) with the MapDocument function or a

layer file with the Layer function, then SDE layers will render and not appear as

broken. Currently, there is not an alternative for secured web services. See

the Layer help for a code example.

To learn more about automating the repair of broken layers, refer to: Updating and

Fixing Data Sources.

Syntax

ListBrokenDataSources (map_document_or_layer)

Parameter Explanation
Data

Type

map_document_or_layer A variable that references

a MapDocument or Layer object.
Object

Return Value

Data Type Explanation

Layer
A Python list of Layer objects.

Code Sample

ListBrokenDataSources example:

This script will search for broken data sources in all map documents that exist in a

single folder. A report with map document names and broken sources will be

printed.

import arcpy, os

path = r"C:\Project"

for fileName in os.listdir(path):

 fullPath = os.path.join(path, fileName)

 if os.path.isfile(fullPath):

 basename, extension = os.path.splitext(fullPath)

 if extension == ".mxd":

 mxd = arcpy.mapping.MapDocument(fullPath)

 print "MXD: " + fileName

 brknList = arcpy.mapping.ListBrokenDataSources(mxd)

 for brknItem in brknList:

 print "\t" + brknItem.name

del mxd

http://resources.arcgis.com/en/help/main/10.2/0017/0017000000pt000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s3/00s30000004p000000.htm

ListDataFrames (arcpy.mapping)
Top

Summary

Returns a Python list of DataFrame objects that exist within a single map

document (.mxd).

Discussion

ListDataFrames always returns a Python list object even if only one data frame

is returned. In order to return a DataFrame object, an index value must be used

on the list (e.g., df =

arcpy.mapping.ListDataFrames(mxd)[0]). For loops on a list provide an

easy mechanism to iterate through each item in a list (e.g., for df in

arcpy.mapping.ListDataFrames(mxd):).

Wildcards are not case sensitive. A wildcard string of "la*" will return a data

frame with a name Layers.

It is possible that there might be data frames in a map document that have the

same name. If that is the case, then other properties may need to be used to

isolate a specific data frame. Properties such as a data

frame'scredits or description could be used to do this. It is ideal that all data

frames be uniquely named.

Syntax

ListDataFrames (map_document, {wildcard})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

wildcard
A combination of asterisks (*) and characters can be used to

help limit the results.

(The default value is None)

String

Return Value

Data Type Explanation

DataFrame
A Python list of DataFrame objects.

Code Sample

DataFrame example:

This script will search for a data frame with the name Transportation and set

the scale and rotation to the appropriate values.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for df in arcpy.mapping.ListDataFrames(mxd, "t*"):

 if df.name.lower == "transportation":

 df.scale = 24000

 df.rotation = 5.5

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd

ListLayers (arcpy.mapping)
Top

Summary

Returns a Python list of Layer objects that exist within a map document (.mxd), a

data frame within a map document, or layers within a layer (.lyr) file.

Discussion

ListLayers always returns a Python list object even if only one layer is returned.

In order to return a Layer object, an index value must be used on the list

(e.g., lyr = arcpy.mapping.ListLayers(mxd)[0]). For loops on a list

provide an easy mechanism to iterate through each item in a list (e.g., for lyr

in arcpy.mapping.ListLayers(mxd):).

When working with layer files, the data_frame parameter should not be used

because layer files don't support data frames; if it is, it will be ignored.

The Layer() function is for referencing layer (.lyr) files stored on disk.

Group layers are treated just like layers. The index values are simply generated

from top to bottom as they appear in the table of contents or the way they would

appear in a layer file. The same applies if a group layer is within another group

layer. A map document with a single group layer with three layers within it will

return a Python list of four layer objects, the group layer being the first. One way of

determining if a layer is inside a group layer is to interrogate

the longName property. A layer's longName will include the group layer name as

part of the name.

Wildcards are used on the name property and are not case sensitive. A wildcard

string of "so*" will return a layer with the name Soils. Wildcards can be skipped

in the scripting syntax simply by passing an empty string (""), an asterisk (*), or

entering wildcard=None, or nothing at all if it is the last optional parameter in the

syntax.

It is possible that there might be layers in a map document or layer file that have

the same name. If that is the case, then other properties may need to be used to

isolate a specific layer. Properties such as a layer'sdescription or a

layer's dataSource could be used to do this. It is ideal that all layers in a map

document or at least in a layer be uniquely named.

Syntax

ListLayers (map_document_or_layer, {wildcard}, {data_frame})

Parameter Explanation Data Type

map_document_or_layer A variable that references

a MapDocument or Layer object.
Object

wildcard
A combination of asterisks (*) and characters can be

used to help limit the results.

(The default value is None)

String

data_frame A variable that references a DataFrame object.

(The default value is None)

DataFrame

Return Value

Data Type Explanation

Layer A Python list of Layer objects.

Code Sample

ListLayers example 1:

This script will print the name of the first layer in a data frame named Traffic

Analysis. The wildcard parameter is skipped using a blank string.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Traffic Analysis")[0]

print arcpy.mapping.ListLayers(mxd, "", df)[0].name

del mxd

ListLayers example 2:

The following script will find a layer called Lakes in a data frame named County

Maps, turn the layer on (to be visible) and set the transparency to 50%. An issue is

that there happens to be two layers with the same name in the same data frame

so the description property is used to further isolate the layer of interest.

Ideally, all layers would have a unique name but that isn't always the case so

other properties have to be used to isolate the layer of interest. In this example,

the description is used.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

for lyr in arcpy.mapping.ListLayers(mxd, "Lakes", df):

 if lyr.description == "USGS Lakes":

 lyr.visible = True

 lyr.transparency = 50

mxd.save()

del mxd

ListLayoutElements (arcpy.mapping)
Top

Summary

Returns a Python list of layout elements that exist within a map document (.mxd)

layout.

Discussion

ListLayoutElements always returns a Python list object even if only one page

element is returned. In order to return an element object, an index value must be

used on the list (e.g., elm =

arcpy.mapping.ListLayoutElements(mxd)[0]). For loops on a list

provide an easy mechanism to iterate through each item in the list (e.g., for elm

in arcpy.mapping.ListLayoutElements(mxd):).

ListLayoutElements only returns elements from a page layout and not map

annotation elements that may exist within a data frame.

Each page element has a name property that can be set within the element

properties dialog box within ArcMap (located on the Size and Position tab). It is the

map document author's responsibility to ensure each page element is given a

unique name so that elements can be uniquely identified. If two elements have the

same name, there is no way for certain to ensure it is the element you want to

reference.

ListLayoutElements will also return the elements within a group element into a

flattened list. This makes it possible to easily search and replace text strings, for

example, without having to navigate through a group element structure.

The element_type parameter can be skipped simply by passing an empty string

("") or entering element_type=None.

Wildcards are used on the name property and are not case sensitive. A wildcard

string of "*title" will return a page element with a name Main Title.

Wildcards can be skipped in the scripting syntax simply by passing an empty

string (""), an asterisk (*), or entering wildcard=None, or nothing at all if it is the

last optional parameter in the syntax.

Refer to the individual element objects for more

information: DataFrame, GraphicElement, LegendElement, MapsurroundElement,

PictureElement, and TextElement.

Syntax

ListLayoutElements (map_document, {element_type}, {wildcard})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

element_type
A string that represents the element type that will be used to

filter the returned list of elements.

 DATAFRAME_ELEMENT —Dataframe element

 GRAPHIC_ELEMENT —Graphic element

 LEGEND_ELEMENT —Legend element

 MAPSURROUND_ELEMENT —Mapsurround element

 PICTURE_ELEMENT —Picture element

 TEXT_ELEMENT —Text element

(The default value is None)

String

wildcard
A combination of asterisks (*) and characters can be used to

help limit the results.

(The default value is None)

String

Return Value

Data Type Explanation

Object A Python list of page layout elements. The types of objects that can be returned

are: DataFrame, GraphicElement, LegendElement, MapsurroundElement, Picture

Element, and TextElement.

Code Sample

ListLayoutElements example 1:

This script will search all text elements, including elements in a group, that have a

text value of Old String and replace that value with New String.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for elm in arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT"):

 if elm.text == "Old String":

 elm.text = "New String"

mxd.save()

del mxd

ListLayoutElements example 2:

The following script will find a picture element using a wildcard and then change

the picture's data source.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for elm in arcpy.mapping.ListLayoutElements(mxd,"PICTURE_ELEMENT",

"*logo*"):

 if elm.name == "CityLogo":

 elm.sourceImage = r"C:\Project\Data\Photo.bmp"

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd

ListMapServices (arcpy.mapping)
Top

Summary

Legacy:

This method has been deprecated starting at ArcGIS 10.1 and will return a

runtime error. Please consult the ArcGIS documentation for the usage of the

new ArcGIS for Server Administrator API.

Lists the names of map services for a designated ArcGIS for Server.

Discussion

This method has been deprecated starting at ArcGIS 10.1 and will return a runtime

error.

Starting at version 10.1, ArcGIS for Server has a new architecture which may

require you to adjust how you work with the server. See the following help topics

for more information: What to expect when migrating to ArcGIS 10.2 for

Server and Migration to ArcGIS 10.2 for Server.

You can list Map Services using the ArcGIS for Server Administrator API which is

available through the ArcGIS Site Directory. The default URL of the ArcGIS for

Server Site Directory is as follows:

http://<server name>:6080/arcgis/admin

Note:

The URL of the Site Directory may vary if you have configured ArcGIS for

Server Web Adaptor to work with your site. For example, the inclusion of the port

number, 6080, may not be required. Check your web adaptor configuration to

obtain the correct URL.

An example of using Python and the ArcGIS for Server Administrator API to list

Map Services is below:

Note:

A code sample to generate an ArcGIS for Server token can be found

here: DeleteMapService.

import json, urllib2

server = "<server>"

port = "6080"

token = '<token string>'

baseUrl = "http://{}:{}/arcgis/admin/services".format(server, port)

def getCatalog(token):
 catalog = json.load(urllib2.urlopen(baseUrl + "/" + "?f=json&token="

+ token))

 print 'Root'

 if "error" in catalog: return

 services = catalog['services']

 for service in services:

 response = json.load(urllib2.urlopen(baseUrl + '/' +

service['serviceName'] + '/' + service['type'] + "?f=json&token=" +

token))

 print ' %s %s (%s)' % (service['serviceName'], service['type'],

'ERROR' if "error" in response else 'SUCCESS')

 folders = catalog['folders']

 for folderName in folders:

 catalog = json.load(urllib2.urlopen(baseUrl + "/" + folderName +

"?f=json&token=" + token))

 print folderName

 if "error" in catalog: return

 services = catalog['services']

 for service in services:

 response = json.load(urllib2.urlopen(baseUrl + '/' +

service['serviceName'] + '/' + service['type'] + "?f=json&token=" +

token))

 print ' %s %s (%s)' % (service['serviceName'], service['type'],

'ERROR' if "error" in response else 'SUCCESS')

getCatalog(token)

You can also list Map Services using the ArcGIS for Server REST API which is

available through the ArcGIS Services Directory. The default URL of the ArcGIS

for Server Services Directory is as follows:

http://<server name>:6080/arcgis/rest/services

To get started using the ArcGIS for Server Services Directory and REST API, see

the help within the Services Directory.

http://resources.arcgis.com/en/help/main/10.2/0154/0154000005p3000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002p0000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000005p3000000.htm

An example of using Python and the ArcGIS for Server REST API to list Map

Services is below:

import json, urllib2

server = "<server>"

port = "6080"

baseUrl = "http://{}:{}/arcgis/rest/services".format(server, port)

def getCatalog():

 catalog = json.load(urllib2.urlopen(baseUrl + "/" + "?f=json"))

 print 'ROOT'

 if "error" in catalog: return

 services = catalog['services']

 for service in services:

 response = json.load(urllib2.urlopen(baseUrl + '/' +

service['name'] + '/' + service['type'] + "?f=json"))

 print ' %s %s (%s)' % (service['name'], service['type'], 'ERROR'

if "error" in response else 'SUCCESS')

 folders = catalog['folders']

 for folderName in folders:

 catalog = json.load(urllib2.urlopen(baseUrl + "/" + folderName +

"?f=json"))

 print folderName

 if "error" in catalog: return

 services = catalog['services']

 for service in services:

 response = json.load(urllib2.urlopen(baseUrl + '/' +

service['name'] + '/' + service['type'] + "?f=json"))

 print ' %s %s (%s)' % (service['name'], service['type'],

'ERROR' if "error" in response else 'SUCCESS')

getCatalog()

Syntax

ListMapServices (connection_url_or_name, server, {connection_username},

{connection_password}, {connection_domain})

Parameter Explanation
Data

Type

connection_url_or_name A string that represents the URL of the ArcGIS for Server to

which you want to get a list of services.
String

server A string that represents the ArcGIS for Server host name. String

connection_username A string that represents a user name used to connect to

the ArcGIS for Server. In order to get a list of map services

this user name should be a member of the ArcGIS for

Server admin group. This variable is only necessary when

connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

connection_password A string that represents a password used to connect to

the ArcGIS for Server. This variable is only necessary when

connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

connection_domain A string that represents a domain name used to connect to

the ArcGIS for Server. This variable is only necessary when

connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

Return Value

Data Type Explanation

List
A Python list of map services.

ListPrinterNames (arcpy.mapping)
Top

Summary

Returns a Python list of available printers on the local computer.

Discussion

ListPrinterNames always returns a list object even if only one printer name is

returned. In order to return a single printer, an index value must be used on the list

(e.g., printer = arcpy.mapping.ListPrinterNames()[0]). For loops on

a list provide an easy mechanism to iterate through each item in the list (e.g., for

printer in arcpy.mapping.ListPrinterNames():).

ListPrinterNames is an easy way to identify the names of the printers currently

available to the local computer. These string values can then be used as input

parameters with the PrintMap() function or the printPages method on

the DataDrivenPages object.

Note:

Driver based printing is not supported on ArcGIS for Server. However, non-driver

based printing is supported in web applications. For more information,

see Printing in web applications.

Syntax

ListPrinterNames ()

Return Value

Data Type Explanation

String
A Python list of printer names.

Code Sample

ListPrinterNames example:

This script will print the names of the availble printers.

import arcpy

for printerName in arcpy.mapping.ListPrinterNames():

 print printerName

http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w5000000.htm

ListStyleItems (arcpy.mapping)
Top

Summary

Returns a Python list of StyleItem objects. A referenced legend item from a style

file (.style or .ServerStyle) can then be used to update already existing

legend items in a layout.

Discussion

In ArcGIS for Desktop, style items are stored in a .style file. In ArcGIS for

Server, style items are stored in a .ServerStyle file. Style items in

a .style file can be viewed and managed in the Style manager window. Style

files are organized into different subfolders with unique names, for example,

Marker Symbols or Legend Items. Currently, the only style items that can be used

with other arcpy.mapping methods are legend items. Legend items define how a

layer appears in a legend. For example, they store information such as legend

arrangement, layer name symbol, and default override patch.

Style items are exposed to the arcpy.mapping API so that users can control the

appearance of legend item style items. A common requirement is to be able to

control the default font size or font type for newly added legend items. To

accomplish this, you must first author a custom legend item and then reference it

with the ListStyleItems function. Next, you would reference the

appropriate Layer that appears in a Legend, and then use

itsupdateItem method. An example of this workflow is provided as a code

sample below.

Syntax

ListStyleItems (style_file_path, style_folder_name, {wildcard})

Parameter Explanation
Data

Type

style_file_path A full path to an existing style (.style) or server style

(.ServerStyle) file.

There are two additional shortcuts that don't require a full path. First,

type the name of the ArcGIS system style file, for

example,"ESRI.style" or "ESRI.ServerStyle" or "Transp

ortation.style". The function will automatically search for the

style in the appropriate ArcGIS installation style folder. Second, with

ArcGIS for Desktop installations, you can use the

keyword"USER_STYLE". This will automatically search the local

user profile rather than requiring the full path. If the style file does not

exist in either of these two known system locations, then the full path

including the file extension must be provided, for

example,"C:/Project/CustomStyles.style".

String

style_folder_n

ame

The name of the style folder in the style file the way it appears in

the Style manager window. Currently, only Legend Items can be

used with other arcpy.mapping methods.

String

wildcard
A combination of asterisks (*) and characters can be used to help limit

the results based on the style item name property.

(The default value is None)

String

Code Sample

ListStyleItems example

The following script uses the workflow outlined above and updates a legend's

legend item style item. A layer is added to the first data frame in the map

document and the legend item style item will be updated with a custom legend

item style item named NewDefaultLegendStyle. The custom .style file is

saved in the user's profile location.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd)[0]

lyrFile = arcpy.mapping.Layer(r"C:\Project\Data\Rivers.lyr")

arcpy.mapping.AddLayer(df, lyrFile, "TOP")

styleItem = arcpy.mapping.ListStyleItems("USER_STYLE", "Legend Items",

"NewDefaultLegendStyle")[0]

lyr = arcpy.mapping.ListLayers(mxd, 'Rivers', df)[0]

legend = arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT")[0]

legend.updateItem(lyr, styleItem)

del mxd

ListTableViews (arcpy.mapping)
Top

Summary

Returns a Python list of TableView objects that exist within a map document

(.mxd).

Discussion

ListTableViews always returns a list object even if only one table is returned. In

order to return a TableView object, an index value must be used on the list

(e.g., aTable = arcpy.mapping.ListTableViews(mxd)[0]). For loops

on a list provide an easy mechanism to iterate through each item in the list

(e.g., for aTable in arcpy.mapping.ListTableViews(mxd):).

Wildcards are used on the name property and are not case sensitive. A wildcard

string of "so*" will return a layer with a name Soils. Wildcards can be skipped

in the scripting syntax simply by passing an empty string (""), an asterisk (*), or

entering wildcard=None, or nothing at all if it is the last optional parameter in the

syntax.

It is possible that there might be tables in a map document that have the same

name. If that is the case, then other properties may need to be used to isolate a

specific layer. Properties such as a

tables's datasource ordefinitionQuery could be used to do this. It is ideal

that all tables in a map document be uniquely named.

Syntax

ListTableViews (map_document, {wildcard}, {data_frame})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

wildcard
A combination of asterisks (*) and characters can be used to

help limit the results.

(The default value is None)

String

data_frame A variable that references a DataFrame object.

(The default value is None)

DataFrame

Return Value

Data Type Explanation

TableView
A Python list of TableView objects.

Code Sample

ListTableViews example

The following script finds a table called TrafficAccidents in a data frame

named Transportation and sets a definition query.

import arcpy

mxd = arcpy.mapping.MapDocument(r"c:\project\project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "Transportation")[0]

table = arcpy.mapping.ListTableViews(mxd, "TrafficAccidents", df)[0]

table.definitionQuery = "[Accidents] > 5"

mxd.save()

del mxd

MapDocument (arcpy.mapping)
Top

Summary

Provides access to map document (.mxd) properties and methods. A reference to

this object is essential for most map scripting operations.

Discussion

For a more complete discussion refer to the MapDocument Class help.

Syntax

MapDocument (mxd_path)

Parameter Explanation
Data

Type

mxd_path A string that includes the full path and file name of an existing map

document (.mxd) or a string that contains the keywordCURRENT.

String

Return Value

Data Type Explanation

MapDocument
The MapDocument object provides access to map document properties and

methods. A reference to this object is essential for most map scripting

operations.

Code Sample

MapDocument example 1

The following script creates a separate MXD file for each data frame in a map

document. The output map documents will be saved in data view mode so when

each map document is opened, the corresponding data frame will be active data

frame. The script also sets the title property of each output map document.

Because this script uses a system path to the map document, it can be executed

outside an ArcMap application. Note: Python strings cannot end with a backslash,

even when the string is preceded by an r. You must use a double backslash. This

becomes important when appending dynamic file names to a folder path.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for df in arcpy.mapping.ListDataFrames(mxd):

 mxd.activeView = df.name

 mxd.title = df.name

 mxd.saveACopy(r"C:\Project\Output\\" + df.name + ".mxd")

del mxd

MapDocument example 2

The following script demonstrates how the CURRENT keyword can be used within

the Python window. This sample will update the first data frame's name and

refresh the table of contents so the change can be see in the application. Paste

the following code into the Python window within a new ArcMap document.

mxd = arcpy.mapping.MapDocument("CURRENT")

arcpy.mapping.ListDataFrames(mxd)[0].name = "New Data Frame Name"

arcpy.RefreshTOC()

del mxd

When pasted into the interactive window it will appear as follows. The three dots to

the left of the code block indicate that the lines are a single block of code that will be

executed together. You must press the Enter key to execute these lines.

>>> mxd = arcpy.mapping.MapDocument("CURRENT")

... arcpy.mapping.ListDataFrames(mxd)[0].name = "New Data Frame Name"

... arcpy.RefreshTOC()

... del mxd

...

MapDocument example 3

The following is another simple script that demonstrates the use of

the CURRENT keyword within the Python window. Each layer name will be printed

to the Python window. Loops are also possible, provided that you maintain the

correct indentation. Similar to the example above, paste the code below into the

Python window.

mxd = arcpy.mapping.MapDocument("CURRENT")

for lyr in arcpy.mapping.ListLayers(mxd):

 print lyr.name

del mxd

When pasted into the interactive window it will appear as follows. Again, press the

Enter key to execute the lines.

>>> mxd = arcpy.mapping.MapDocument("CURRENT")

... for lyr in arcpy.mapping.ListLayers(mxd):

... print lyr.name

... del mxd

...

MapDocument example 4

The following script will allow secured layers to render correctly by creating an

SDE connection in memory before opening a map document that requires

password information. This script simply defines the connection information and

exports the map document to a PDF file. It is good practice to delete this reference

from memory before the script closes.

import arcpy, os

#Remove temporary connection file if it already exists

sdeFile = r"C:\Project\Output\TempSDEConnectionFile.sde"

if os.path.exists(sdeFile):

 os.remove(sdeFile)

#Create temporary connection file in memory

arcpy.CreateArcSDEConnectionFile_management(r"C:\Project\Output",

"TempConnection", "myServerName", "5151", "myDatabase",

"DATABASE_AUTH", "myUserName", "myPassword", "SAVE_USERNAME",

"myUser.DEFAULT", "SAVE_VERSION")

#Export a map document to verify that secured layers are present

mxd = arcpy.mapping.MapDocument(r"C:\Project\SDEdata.mxd")

arcpy.mapping.ExportToPDF(mxd, r"C:\Project\output\SDEdata.pdf")

os.remove(sdeFile)

del mxd

MoveLayer (arcpy.mapping)
Top

Summary

Provides the ability to move a layer to a specific location within a data frame or

group layer in a map document (.mxd).

Discussion

MoveLayer will move a layer within a data frame and also within group layers in

the same data frame. The moved_layer and reference_layer must reside

within the same data frame. A layer cannot be moved from one data frame to a

different data frame even within the same map

document. Add_Layer, Insert_Layer, and RemoveLayer functions can be used to

accomplish this requirement.

Syntax

MoveLayer (data_frame, reference_layer, move_layer, {insert_position})

Parameter Explanation Data Type

data_frame A reference to a DataFrame object within which the layer will be

moved.
DataFrame

reference_layer A reference to a Layer object representing an existing layer that

determines the location in relation to where the layer will be

moved.

Layer

move_layer A reference to a Layer object representing the layer to be moved. Layer

insert_position
A constant that determines the placement of the moved layer

relative to the referenced layer.

 AFTER —Inserts the new layer after or below the referenced
layer

 BEFORE —Inserts the new layer before or above the
referenced layer

(The default value is BEFORE)

String

Code Sample

MoveLayer example:

The following script will move a layer called Rivers above a reference layer

called Lakes. Both layers are in a data frame called County Maps.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

for lyr in arcpy.mapping.ListLayers(mxd, "", df):

 if lyr.name.lower() == "rivers":

 moveLayer = lyr

 if lyr.name.lower() == "lakes":

 refLayer = lyr

arcpy.mapping.MoveLayer(df, refLayer, moveLayer, "BEFORE")

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd

PDFDocumentCreate (arcpy.mapping)
Top

Summary

Creates an empty PDFDocument object in memory.

Discussion

The PDFDocumentCreate function receives a path to determine the save

location and file name where a new PDF file will be created. However, no PDF file

will be created until subsequent steps are performed to insert or append pages

and save the PDF file. PDFDocumentCreate will return a PDFDocument object

that your script should then manipulate and save. A common scenario for using

this function is the creation of a PDF map book. The steps typically involve

exporting a number of separate PDF files from map documents, creating a new

PDFDocument object, appending content from the exported PDF files and other

documents, and saving the final PDF map book.

Please note that it is not possible to create blank PDF files, nor does

the PDFDocumentCreate function add any blank pages to the document

contents. For the saveAndClose method to successfully create a file, content

must be added to the PDFDocument object using

the appendPages or insertPages methods.

For more discussion on how to create map books, see the Building Map Books

with ArcGIS help topic.

Syntax

PDFDocumentCreate (pdf_path)

Parameter Explanation
Data

Type

pdf_path A string that specifies the path and file name for the resulting PDF file

when the saveAndClose method is called.
String

Code Sample

PDFDocumentCreate example

This script will create a new PDF document, append the contents of three

separate PDF documents, and save the resulting PDF file.

import arcpy, os

#Set file name and remove if it already exists

pdfPath = r"C:\Project\ParcelAtlasMapBook.pdf"

if os.path.exists(pdfPath):

 os.remove(pdfPath)

#Create the file and append pages

pdfDoc = arcpy.mapping.PDFDocumentCreate(pdfPath)

pdfDoc.appendPages(r"C:\Project\Title.pdf")

pdfDoc.appendPages(r"C:\Project\ParcelAtlas.pdf")

pdfDoc.appendPages(r"C:\Project\ContactInfo.pdf")

#Commit changes and delete variable reference

pdfDoc.saveAndClose()

del pdfDoc

http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000002s000000.htm
http://resources.arcgis.com/en/help/main/10.2/00s9/00s90000002s000000.htm

PDFDocumentOpen (arcpy.mapping)
Top

Summary

Returns a PDFDocument object (the contents of the object come from a PDF file

on disk, and subsequent operations followed by a call to saveAndClose will

modify the original PDF file).

Discussion

Use the PDFDocumentOpen function to get a reference to an existing PDF file

and modify its contents. For your changes to be committed to disk, be sure to

call saveAndClose after performing the PDFDocument operations.

Syntax

PDFDocumentOpen (pdf_path, {user_password}, {master_password})

Parameter Explanation
Data

Type

pdf_path
A string that specifies the path and file name of the PDF file to

open.

String

user_password
A string that specifies the user password. User passwords are

typically used to restrict opening and specific master-defined

operations for a PDF file.

String

master_password
A string that specifies the master password. Master passwords are

typically used to restrict setting of user permissions for a PDF file.

String

Code Sample

PDFDocumentOpen example

The following script modifies the PDF document metadata properties and sets the

style in which the document will open.

import arcpy

pdfDoc =

arcpy.mapping.PDFDocumentOpen(r"C:\Project\ParcelAtlasMapBook.pdf")

pdfDoc.updateDocProperties(pdf_title="Atlas Map",

 pdf_author="Esri",

 pdf_subject="Map Book",

 pdf_keywords="Atlas; Map Books",

 pdf_open_view="USE_THUMBS",

 pdf_layout="SINGLE_PAGE")

pdfDoc.saveAndClose()

del pdfDoc

PrintMap (arcpy.mapping)
Top

Summary

Prints a specific data frame or a map document (.mxd) layout to a printer or file

Discussion

PrintMap provides the ability to print a specific data frame or a map document

layout to a system printer or a print file. If a printer name is not

provided, PrintMap will use the printer that is saved with the map document or

will use the default system printer if the map document does not have a printer

saved.

An easy way to determine the printers that are available to the local computer is to

use the ListPrinterNames function.

If you want to print using ArcPress, you must set up the printer properties and

save the printer with the map document.

Note:

Driver based printing is not supported on ArcGIS for Server. However, non-driver

based printing is supported in web applications. For more information,

see Printing in web applications.

Syntax

PrintMap (map_document, {printer_name}, {data_frame}, {out_print_file},

{image_quality})

Parameter Explanation Data Type

map_document A variable that references a MapDocument object. MapDocument

printer_name
A string that represents the name of a printer on the local

computer.

(The default value is None)

String

data_frame A variable that references a DataFrame object.

(The default value is PAGE_LAYOUT)

DataFrame

out_print_file A path that includes the name of an output print file. The

format created is dependent on the printer. If you are using a

postscript printer, the format will be postscript, and it is

recommended that a .ps extension be provided; if you are

using a Windows printer, use a .prn extension.

(The default value is None)

String

image_quality
A string that defines output image quality, the draw resolution

of map layers that draw as rasters. Using the default value of

"None" will cause the function to use the image quality saved

in the map document.

 BEST —An output image quality resample ratio of 1.

 BETTER —An output image quality resample ratio of 2.

 NORMAL —An output image quality resample ratio of 3.

 FASTER —An output image quality resample ratio of 4.

 FASTEST —An output image quality resample ratio of 5.

(The default value is None)

String

Code Sample

PrintMap example 1

The following script prints a map using the default printer options.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

arcpy.mapping.PrintMap(mxd)

PrintMap example 2

The following script prints the first data frame within a map document using a

specified printer name.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd)[0]

arcpy.mapping.PrintMap(mxd, r"\\olyfile\OLYCanon", df)

http://resources.arcgis.com/en/help/main/10.2/0154/0154000004w5000000.htm

PublishMSDToServer (arcpy.mapping)
Top

Summary

Legacy:

Starting at ArcGIS 10.1, Map Server Definition (.msd) files have been replaced

with Service Definition Draft (.sddraft) and Service Definition (.sd) files.

Please use the Upload Service Definition Geoprocessing tool instead.

Publishes an existing map service definition (MSD) file to a designated ArcGIS for

Server.

Discussion

Starting at ArcGIS 10.1, Map Server Definition (.msd) files have been replaced

with Service Definition Draft (.sddraft) and Service Definition (.sd) files. See

the following help topics for more information: What to expect when migrating to

ArcGIS 10.2 for Server and Migration to ArcGIS 10.2 for Server.

Automating the publishing of a Map Document to a GIS Server using ArcPy is a

four-part process. The first step is to run the CreateMapSDDraft function. The

output created from CreateMapSDDraft is a Service Definition Draft (.sddraft)

file. A Service Definition Draft is the combination of a Map Document, information

about the server, and a set of service properties. The output Service Definition

Draft file can then be analysed for suitability and potential performance issues

using the AnalyzeForSD function. The Service Definition Draft can then be

converted to a fully consolidated Service Definition (.sd) file using the Stage

Service Geoprocessing tool. Staging compiles all the necessary information

needed to successfully publish the GIS resource. If you have chosen to copy data

to the server, the data will be added when the Service Definition Draft is staged.

Finally, the Service Definition file can be uploaded and published as a GIS service

to a specified GIS server using the Upload Service Definition Geoprocessing tool.

This step takes the Service Definition file, copies it onto the server, extracts

required information, and publishes the GIS resource. For more information,

see overview of the Publishing toolset.

Syntax

PublishMSDToServer (msd_path, connection_url_or_name, server,

service_name, {folder_name}, {service_capabilities}, {connection_username},

{connection_password}, {connection_domain})

Parameter Explanation
Data

Type

msd_path
A string that represents the path and name of an existing

MXD document you want to serve.

String

connection_url_or_name A string that represents the URL of the ArcGIS for

Server to which you want to publish the MSD.
String

server A string that represents the ArcGIS for Server host name to

which you want to publish the MSD.
String

service_name
A string that represents the name of the service. This is the

name people will see and use to identify the service. The

name can only contain alphanumeric characters and

underscores. No spaces or special characters are allowed.

The name cannot be more than 120 characters in length.

String

folder_name
A string that represents a folder name to which you want to

publish the MSD. If the folder does not currently exist, it

will be created. The default folder is the server root level.

String

service_capabilities

[service_capabilities,...]

A list of strings that represents additional capabilities in

addition to the map service capability.

 MAPPING —The default ArcGIS for Server capability

 KML —Keyhole Markup Language

 WCS —Web Coverage Service

 WFS —Web Feature Service

 WMS —Web Map Service

(The default value is MAPPING)

String

connection_username A string that represents a user name used to connect to

the ArcGIS for Server. To publish a map service, this user

name should be a member of the ArcGIS for Server admin

group. This variable is only necessary when connecting to

a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

connection_password A string that represents a password used to connect to

the ArcGIS for Server. This variable is only necessary

when connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

connection_domain A string that represents a domain name used to connect to

the ArcGIS for Server. This variable is only necessary

when connecting to a UNIX/Linux ArcGIS for Server.

(The default value is None)

String

http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002nz000000.htm
http://resources.arcgis.com/en/help/main/10.2/0154/0154000002p0000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001r000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001p000000.htm
http://resources.arcgis.com/en/help/main/10.2/0054/00540000001q000000.htm

RemoveLayer (arcpy.mapping)
Top

Summary

Provides the ability to remove a layer within a data frame in a map document

(.mxd).

Discussion

RemoveLayer will remove a single layer or group layer from a specific data

frame. If there is more than one layer that meets the criteria, then only the first

layer will be removed unless the script iterates through each layer in a returned

list.

Syntax

RemoveLayer (data_frame, remove_layer)

Parameter Explanation Data Type

data_frame A reference to a DataFrame object that contains the layer to be

removed.
DataFrame

remove_layer A reference to a Layer object representing the layer to be removed. Layer

Code Sample

RemoveLayer example:

The following script will remove all layers with the name Rivers from a map

document.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for df in arcpy.mapping.ListDataFrames(mxd):

 for lyr in arcpy.mapping.ListLayers(mxd, "", df):

 if lyr.name.lower() == "rivers":

 arcpy.mapping.RemoveLayer(df, lyr)

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd

RemoveLayer example 2

The following script will remove a layer from a data frame called County

Maps based on it's name and data source because other layers exist within the

data frame with the same name but different source.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

for lyr in arcpy.mapping.ListLayers(mxd, "", df):

 if lyr.name.lower() == "lakes":

 if lyr.dataSource == r"C:\Project\Data\Data.mdb\NE_Lakes":

 arcpy.mapping.RemoveLayer(df, lyr)

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd

RemoveTableView (arcpy.mapping)
Top

Summary

Provides the ability to remove a table within a data frame in a map document

(.mxd).

Discussion

RemoveTableView will remove a single table from a specific data frame in a map

document.

Syntax

RemoveTableView (data_frame, remove_table)

Parameter Explanation Data Type

data_frame A reference to a DataFrame object that contains the layer to be

removed.
DataFrame

remove_table A reference to a Layer object representing the layer to be removed. TableView

Code Sample

RemoveTableView example

The following script will remove all tables with the name Accidents from a map

document.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

for df in arcpy.mapping.ListDataFrames(mxd):

 for tbl in arcpy.mapping.ListTableViews(mxd, "", df):

 if tbl.name.lower() == "accidents":

 arcpy.mapping.RemoveTableView(df, tbl)

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd

TableView (arcpy.mapping)
Top

Summary

Enables you to reference a table in a workspace as a TableView object so that it

can be added to a map document.

Discussion

For a more complete discussion, see the TableView_Class help topic.

Syntax

TableView (table_view_data_source)

Parameter Explanation
Data

Type

table_view_data_source
A string that includes the full workspace path, including the

name of the table.

String

Return Value

Data Type Explanation

TableView
The TableView_Class object provides access to basic table properties.

UpdateLayer (arcpy.mapping)
Top

Summary

Provides the ability to update all layer properties or just the symbology for a layer

in a map document (.mxd) by extracting the information from a source layer.

Discussion

The arcpy.mapping API only provides access to a limited number of layer

properties that can be directly modified but all properties found in the Layer

Properties dialog box can be modified using the UpdateLayer function. The

information is extracted from a source layer and applied to the layer in a map

document that needs to be updated. The source_layer can either be a layer

(.lyr) file or a layer within a map document. UpdateLayer is a robust function

because it can be used in several different ways to produce different results.

One option is to update only a layer's symbology. In this case,

the update_layer and source_layer must have similar geometry types.

Depending on the renderer (for example, unique value using a particular attribute),

the attribute definitions also need to be the same. Updating symbology only is the

default behavior.

Another option is to update ALL layer properties, including symbology

(symbology_only=False). For example, you may want to update the field

aliases, selection symbology, query definitions, and so on, for a layer that exists in

many map documents. An easy way of doing this is to use ArcMap to modify the

layer with the appropriate properties and then save the layer out to a layer (.lyr)

file. The layer file can then be used as a source_layer to update all the

properties for a given layer. Use care when updating all properties and make sure

they are not properties that you don't want overwritten.

UpdateLayer is also capable of switching out completely unrelated layers. For

example, you could replace a polygon layer with a raster layer or a group layer.

This capability is only possible if the symbology_only value is set to False;

otherwise, you might have conflicts with attributes and/or geometry types.

UpdateLayer, when not restricted to symbology, is essentially calling

the RemoveLayer and AddLayer functions.

If you want to update the properties for a layer within a layer file, you must modify

the properties of the layer in a map document first and then save the changes

back to a layer file. See the Layer object's save or saveACopymethods.

If you are only interested in updating a layer's time properties,

see UpdateLayerTime.

Syntax

UpdateLayer (data_frame, update_layer, source_layer, {symbology_only})

Parameter Explanation Data Type

data_frame A reference to a DataFrame object that contains the layer to be

updated.
DataFrame

update_layer A Layer object representing an existing layer that will be updated. Layer

source_layer A reference to a Layer object that contains the information to be

applied to the update_layer.
Layer

symbology_only A Boolean that determines whether or not to update only the

layer's symbology, or all other properties as well. If set to True,

only the layer's symbology will be updated.

(The default value is True)

Boolean

Code Sample

UpdateLayer example 1

The following script will update a layer's symbology only using a layer file. The

layer is called Rivers and is in a data frame called County Maps.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

updateLayer = arcpy.mapping.ListLayers(mxd, "Rivers", df)[0]

sourceLayer = arcpy.mapping.Layer(r"C:\Project\Data\Rivers.lyr")

arcpy.mapping.UpdateLayer(df, updateLayer, sourceLayer, True)

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, sourceLayer

UpdateLayer example 2

The following script will completely replace a layer called Rivers with a group

layer from another map document which displays different river feature classes at

different scales.

import arcpy

#Reference layer in secondary map document

mxd2 = arcpy.mapping.MapDocument(r"C:\Project\ProjectTemplate.mxd")

df2 = arcpy.mapping.ListDataFrames(mxd2, "Layers")[0]

sourceLayer = arcpy.mapping.ListLayers(mxd2, "Rivers Group Layer",

df2)[0]

#Update layer in primary map document

mxd = arcpy.mapping.MapDocument(r"C:\Project\Project.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "County Maps")[0]

updateLayer = arcpy.mapping.ListLayers(mxd, "Rivers", df)[0]

arcpy.mapping.UpdateLayer(df, updateLayer, sourceLayer, False)

#Save to a new map document and clear variable references

mxd.saveACopy(r"C:\Project\Project2.mxd")

del mxd, mxd2

UpdateLayerTime (arcpy.mapping)
Top

Summary

Provides the ability to update a layer's time properties for a layer in a map

document (.mxd) by extracting time properties from a source layer.

Discussion

The UpdateLayer function has the ability to only update a layer's symbology

properties or update ALL layer properties, including time properties.

The UpdateLayerTime function allows you to update only the time properties of

a layer and therefore won't overwrite other layer properties that you don't want to

change.

The source_layer contains the time properies that you want to apply. It can either

be a layer file on disk or a reference to another layer in a map document.

If you want to update the properties for a layer within a layer file, you must modify

the properties of the layer in a map document first and then save the changes

back to a layer file. See the Layer object's save or saveACopymethods and the

code example below.

Syntax

UpdateLayerTime (data_frame, update_layer, source_layer)

Parameter Explanation Data Type

data_frame A reference to a DataFrame object that contains the layer to be

updated.
DataFrame

update_layer A Layer object representing an existing layer that will be updated. Layer

source_layer A reference to a Layer object that contains the information to be

applied to the update_layer.
Layer

Code Sample

UpdateLayerTime example 1

The following script will update a layer's time properties using a layer file. The

layer called temperature is not time enabled. The time properties of a time-

enabled layer file will be applied to the temperature layer.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Temperature.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "World")[0]

lyr = arcpy.mapping.ListLayers(mxd, "temperature", df)[0]

lyrFile =

arcpy.mapping.Layer(r"C:\Project\Data\Time\LayerWithTimeProperties.lyr

")

arcpy.mapping.UpdateLayerTime(df, lyr, lyrFile)

Save changes to a new MXD

mxd.saveACopy(r"C:\Project\Temperature2.mxd")

Clean up variables

del mxd, df, lyr, lyrFile

UpdateLayerTime example 2

The following script is similar to the one above but saves the changes back out to

a layer file.

import arcpy

mxd = arcpy.mapping.MapDocument(r"C:\Project\Temperature.mxd")

df = arcpy.mapping.ListDataFrames(mxd, "World")[0]

lyr = arcpy.mapping.ListLayers(mxd, "temperature", df)[0]

lyrFile =

arcpy.mapping.Layer(r"C:\Project\Data\Time\LayerWithTimeProperties.lyr

") #orginally authored in ArcMap

arcpy.mapping.UpdateLayerTime(df, lyr, lyrFile)

Save changes to a new Layer file

lyr.saveACopy(r"C:\Project\TemperatureWithTime.lyr")

Clean up variables

del mxd, df, lyr, lyrFile

ArcPy.Mapping Parameter Constants
-with required and {optional} parameters

{add_position}—Used by AddLayer and AddLayerToGroup.

 "AUTO_ARRANGE"—Default

 "BOTTOM"

 "TOP"

{colorspace}—Used
by DataDrivenPages.exportToPDF, ExportToAI, ExportToEPS,
and ExportToPDF.

 "CMYK"

 "RGB"—Default

{color_mode}—Used
by ExportToBMP, ExportToGIF, ExportToJPEG, ExportToPNG,
and ExportToTIFF.

 "1-BIT_MONOCHROME_MASK"

 "1-BIT_MONOCHROME_THRESHOLD"

 "24-BIT_TRUE_COLOR"—Default for all but ExportToGIF

 "8-BIT_GRAYSCALE"—Default for ExportToGIF

 "8-BIT_PALETTE"

connection_type—Used by CreateGISServerConnectionFile.

 "ADMINISTER_GIS_SERVICES"

 "PUBLISH_GIS_SERVICES"

 "USE_GIS_SERVICES"

{dataset_option}—Used by ExportReport.

 "ALL"

 "DEFINITION_QUERY"

 "EXTENT"

 "SELECTED"

 "USE_RLF"—Default

displayUnits—A property of the DataFrame object.

 "Centimeters"

 "DecimalDegrees"

 "DecimalDegreesMinutes"

 "DecimalDegreesSeconds"

 "Decimeters"

 "Feet"

 "Inches"

 "Kilometers"

 "Meters"

 "MGRS"

 "Miles"

 "Millimeters"

 "NauticalMiles"

 "Points"

 "Unknown"

 "USNationalGrid"

 "UTM"

 "Yards"

{element_type}—Used by ListLayoutElements.

 "DATAFRAME_ELEMENT"

 "GRAPHIC_ELEMENT"

 "LEGEND_ELEMENT"

 "MAPSURROUND_ELEMENT"

 "PICTURE_ELEMENT"

 "TEXT_ELEMENT"

{encryption}—Used by PDFDocument.updateDocSecurity.

 "AES_V1"

 "AES_V2"

 "RC4"—Default

{gif_compression}—Used by ExportToGIF.

 "LZW"

 "NONE"—Default

 "RLE"

{image_compression}—Used
by DataDrivenPages.exportToPDF, ExportToEPS, and ExportToPDF.

 "ADAPTIVE"—Default

 "DEFLATE"

 "JPEG"

 "LZW"

 "NONE"

 "RLE"

{image_quality}—Used

by DataDrivenPages.exportToPDF, ExportToAI, ExportToEMF, ExportToEPS,
ExportToPDF, ExportToSVG, and PrintMap.

 "BEST"—Default

 "BETTER"

 "FASTER"

 "FASTEST"

 "NORMAL"

{insert_position}—Used by InsertLayer and MoveLayer.

 "AFTER"

 "BEFORE"—Default

{layers_attributes}—Used
by DataDrivenPages.exportToPDF and ExportToPDF.

 "LAYERS_AND_ATTRIBUTES"

 "LAYERS_ONLY"—Default

 "NONE"

{layer_property}—Used by Layer.supports.

 "BRIGHTNESS"

 "CONTRAST"

 "CREDITS"

 "DATASETNAME"

 "DATASOURCE"

 "DEFINITIONQUERY"

 "DESCRIPTION"

 "LABELCLASSES"

 "LONGNAME"

 "MAXSCALE"

 "MINSCALE"

 "NAME"

 "SERVICEPROPERTIES"

 "SHOWLABELS"

 "SYMBOLOGY"

 "SYMBOLOGYTYPE"

 "TIME"

 "TRANSPARENCY"

 "VISIBLE"

 "WORKSPACEPATH"

{msd_anti_aliasing}—Used by ConvertToMSD.

 "BEST"

 "FAST"

 "FASTEST"

 "NONE"—Default

 "NORMAL"

{msd_text_anti_aliasing}—Used by ConvertToMSD.

 "FORCE"—Default

 "NONE"

 "NORMAL"

{multiple_files}—Used by PDFDocument.exportToPDF.

 "PDF_MULTIPLE_FILES_PAGE_INDEX"

 "PDF_MULTIPLE_FILES_PAGE_NAME"

 "PDF_SINGLE_PAGE"—Default

{page_range_type}—Used

by DataDrivenPages.exportToPDF and DataDrivenPages.printPages.

 "ALL"—Default

 "CURRENT"

 "RANGE"

 "SELECTED"

Next Page

{pdf_layout}—Used by PDFDocument.updateDocProperties.

 "DONT_CARE"

 "ONE_COLUMN"

 "SINGLE_PAGE"—Default

 "TWO_COLUMN_LEFT"

 "TWO_COLUMN_RIGHT"

 "TWO_PAGE_LEFT"

 "TWO_PAGE_RIGHT"

{pdf_open_view}—Used by PDFDocument.updateDocProperties.

 "ATTACHMENT"

 "FULL_SCREEN"

 "LAYERS"

 "USE_BOOKMARKS"

 "USE_NONE"

 "USE_THUMBS"—Default

 "VIEWER_DEFAULT"

{permissions}—Used by PDFDocument.updateDocSecurity.

 "ALL"—Default

 "ALL_MASTER"

 "COPY"

 "DOC_ASSEMBLY"

 "EDIT"

 "EDIT_NOTES"

 "FILL_AND_SIGN"

 "HIGH_PRINT"

 "OPEN"

 "PRINT"

 "SECURE"

{picture_symbol}—Used

by DataDrivenPages.exportToPDF, ExportToAI, ExportToEMF, ExportToEPS,
ExportToPDF, and ExportToSVG.

 "RASTERIZE_BITMAP"—Default

 "RASTERIZE_PICTURE"

 "VECTORIZE_BITMAP"

{ps_lang_level}—Used by ExportToEPS.

 2

 3—Default

{record_set}—Used by ExportReport.

 "ALL"

 "SELECTED"

 "USE_RLF"—Default

{rle_compression}—Used by ExportToBMP.

 "NONE"—Default

 "RLE"

{save_username_password}—Used by CreateGISServerConnectionFile.

 "DO_NOT_SAVE_USERNAME"—Default

 "SAVE_USERNAME"—Default

{service_capabilities}—Used by PublishMSDToServer.

 "MAPPING"—Default

 "KML"

 "WCS"

 "WFS"

 "WMS"

{server_type}—Used by CreateGISServerConnectionFile.

 "ARCGIS_SERVER"—Default

 "SPATIAL_DATA_SERVER"

{server_type}—Used by CreateMapSDDraft.

 "ARCGIS_SERVER"—Default

 "FROM_CONNECTION_FILE"

 "MY_HOSTED_SERVICES"

 "SPATIAL_DATA_SERVER"

symbologyType—A property of the Layer object.

 "GRADUATED_COLORS"

 "GRADUATED_SYMBOLS"

 "OTHER"

 "RASTER_CLASSIFIED"

 "UNIQUE_VALUES"

{tiff_compression}—Used by ExportToTIFF.

 "DEFLATE"

 "JPEG"

 "LZW"

 "NONE"—Default

 "PACK_BITS"

timeWindowUnits—A property of DataFrameTime.

 "centuries"

 "decades"

 "days"

 "hours"

 "millseconds"

 "minutes"

 "months"

 "seconds"

 "unknown"

 "weeks"

 "years"

{version}—Used by Layer.saveACopy and MapDocument.saveACopy.

 "10.1"—Default

 "10.0"

 "8.3"

 "9.0/9.1"

 "9.2"

 "9.3"

{workspace_type}—Used

by Layer.replaceDataSource, MapDocument.replaceWorkspacePaths,
and TableView.replaceDataSource.

 "ACCESS_WORKSPACE"

 "ARCINFO_WORKSPACE"

 "CAD_WORKSPACE"

 "EXCEL_WORKSPACE"

 "FILEGDB_WORKSPACE"

 "NONE"

 "OLEDB_WORKSPACE"

 "PCCOVERAGE_WORKSPACE"

 "RASTER_WORKSPACE"

 "SDE_WORKSPACE"

 "SHAPEFILE_WORKSPACE"

 "TEXT_WORKSPACE"

 "TIN_WORKSPACE"

 "VPF_WORKSPACE"

Previous Page

ArcPy.Time Classes and Functions

Time Classes

Class Description

EsriTimeDelta_class The EsriTimeDelta class represents a duration, the difference

between two dates or times.

TimeZoneInfo_class The TimeZoneInfo class can be used to assign a time zone to a

Python datetime object.

Time Functions

Class Description

ListTimeZones

Lists valid Time Zone IDs.

EsriTimeDelta (arcpy.time)
Top

Summary

The EsriTimeDelta class represents a duration, the difference between two

dates or times.

Discussion

The EsriTimeDelta class is an alternative to the core

Python datetime.timedelta and uses internal Esri time units for intervals that

can't be handled by the core Python timedelta object (such as months, weeks, and

so on).

The timeStepInterval property from

the LayerTime and DataFrameTime classes return EsriTimeDelta objects.

Legacy:

Prior to the 10.1 release, the timeStepInterval property from

the DataFrameTime class returned core

Python datetime.timedelta objects.

Syntax

EsriTimeDelta (interval, units)

Parameter Explanation
Data

Type

interval The interval of the EsriTimeDelta. Double

units The units of the EsriTimeDelta. Valid units are milliseconds,

seconds, minutes, hours, days, weeks, months, years, decades, and

centuries.

String

Properties

Property Explanation Data Type

interval

(Read Only)

The interval of the EsriTimeDelta.
Double

units

(Read Only)

The units of the EsriTimeDelta.
String

Code Sample

EsriTimeDelta example 1

The following script accesses the time-step interval property of a time-enabled

layer in a map document. The time-step interval is an EsriTimeDelta object. The

script then prints EsriTimeDelta properties.

import arcpy

mxd = arcpy.mapping.MapDocument('C:/Project/Temperature.mxd')

df = arcpy.mapping.ListDataFrames(mxd, 'USA')[0]

lyr = arcpy.mapping.ListLayers(mxd,'temperature', df)[0]

tsi = lyr.time.timeStepInterval

print "Time Step Interval:", tsi

print "EsriTimeDelta interval:", tsi.interval

print "EsriTimeDelta units:", tsi.units

EsriTimeDelta example 2

The following script uses the EsriTimeDelta object to iterate through twelve

months starting from the current date.

import arcpy, datetime

time = datetime.datetime.now()

for delta in range(1, 13):

 next_date = time + arcpy.time.EsriTimeDelta(1 * delta, "months")

 print next_date

EsriTimeDelta example 3

The following script shows how the EsriTimeDelta handles leap years. The script

adds a month to January 31, 2008 and returns February 29, 2008.

import arcpy, datetime

time = datetime.datetime(2008, 1, 31)

for delta in range(0, 12):

 next_date = time + arcpy.time.EsriTimeDelta(delta, "months")

 print next_date

 delta = delta + 1

TimeZoneInfo (arcpy.time)
Top

Summary

The TimeZoneInfo class can be used to read or assign a time zone to a Python

datetime object.

Discussion

Native datetime objects are not time zone aware. By assigning a time zone to a

datetime object, time zone-related operations can be performed. For example, you

can use the time zone associated with a time value and convert it to another time

zone.

Syntax

TimeZoneInfo (time_zone_id)

Parameter Explanation
Data

Type

time_zone_id A valid time zone ID. A list of available time zone IDs can be obtained

from the ListTimeZones function.
String

Method Overview

Method Explanation

tzname (dt)
Returns the time zone name corresponding to the Python datetime object, dt, as a

string.

Methods

tzname (dt)

Parameter Explanation Data Type

dt
A reference to a Python datetime object.

(The default value is None)

DateTime

Return Value

Data Type Explanation

String
The time zone name corresponding to the datetime object, dt.

Returns the time zone name corresponding to the datetime object, dt, as a string.

Code Sample

TimeZoneInfo example 1

The following script applies a 'Pacific Standard Time' time zone to a Python

datetime object. It then loops through each month to demonstrate how the time

zone name will change to 'Pacific Daylight Time' during the summer in observance

of Daylight Savings Time.

import arcpy

import datetime

tzinfo = arcpy.time.TimeZoneInfo('Pacific Standard Time')

time = datetime.datetime(2011, 1, 1, tzinfo=tzinfo)

for delta in range(1, 13):

 next_date = time + arcpy.time.EsriTimeDelta(1 * delta, "months")

 print next_date, tzinfo.tzname(next_date)

TimeZoneInfo example 2

The following script demonstrates how to convert a datetime value in Pacific

Standard Time to Eastern Standard Time.

import arcpy

import datetime

from_tzinfo = arcpy.time.TimeZoneInfo('Pacific Standard Time')

target_tzInfo = arcpy.time.TimeZoneInfo('Eastern Standard Time')

from_time = datetime.datetime.now(from_tzinfo)

print "target_time =", str(from_time.astimezone(target_tzInfo))

ListTimeZones (arcpy.time)
Top

Summary

Lists valid Time Zone IDs.

Discussion

List available Time Zone IDs for use in the TimeZoneInfo class.

Syntax

ListTimeZones ()

Return Value

Data Type Explanation

String
A list of Time Zone IDs.

Code Sample

ListTimeZones example 1

The following script will list all available Time Zone IDs.

import arcpy

arcpy.time.ListTimeZones()

